SCHOOL OF HUMANITIES, SCIENCES & MANAGEMENT DEPARTMENT OF CHEMISTRY

Periyar Nagar, Vallam, Thanjavur-613403, Tamilnadu Phone +91-4362 264600, Fax +91-4362 264650 Email:headchem@pmu.edu, Web www.pmu.edu

think • innovate • transform

CURRICULUM & SYLLABUS (I - VI Semester) FOR B.Sc. CHEMISTRY

(FULL TIME – 3 Years)

REGULATION 2018

PERIYAR MANIAMMAI INSTITUTE OF SCIENCE & TECHNOLOGY

PERIYAR MANIAMMAI INSTITUTE OF SCIENCE & TECHNOLOGY

I. <u>UNIVERSITY VISION ANDMISSION</u>

VISION

• To be a world class innovative, competitive, up-to-date, academic institution providing technological and other inputs appropriate to the branch of study student has chosen to specialize.

MISSION

- **UM1:** Offering well balanced programmes with scholarly faculty and state of art facilities to impart high level of knowledge.
- **UM2:** Providing student centric education and foster their growth in creativity and entrepreneurship, critical thinking and collaborative work.
- **UM3:** Involving progressive and meaningful research with concern for sustainability and environment.
- UM4: Enabling the students to acquire the skill sets for global competencies.
- **UM5:** Inculcating social responsibilities and ethics along with imparting knowledge.

DEPARTMENT VISION ANDMISSION II.

To prepare the students with basic scientific knowledge in Chemistry for technological development and to provide resources for industry and society through education and research to achieve environmental protection, energy generation and drug development.

MISSION

- **DM 1:** To provide in-depth knowledge in Chemistry to impart technology.
- DM 2: To create new idea to improve the technology by offering M.Phil. and Doctoral programme.

DM 3: To undertake project in thrust areas with societal requirements.

DM 4: To develop novel method for clean technology, Bio energy and drug development.

Table1: Mapping of University Mission with Department Mission

	DM1	DM2	DM3	DM4	TOTAL
UM1	3	3	2	1	9
UM2	3	2	3	1	9
UM3	2	2	3	3	10
UM4	3	2	3	2	10
UM5	2	2	3	3	10
3 -Highlyre	lated	2 -Medium	1 - Low	7	•

3 -Highlyrelated

III. PROGRAMME EDUCATIONAL OBJECTIVE (PEO's)

The Graduate will be

- **PEO-1:** proficient in applying a broad understanding of the basic principles of chemistry to the solution of chemical problems
- **PEO-2:** able to become a highly professional teacher/professor or renowned scientist
- **PEO-3:** able to plan, coordinate, communicate, organize, make decision and lead a team to solve problems and develop application using chemistry.
- PEO-4: professional, ethical, responsible and will contribute to society through active management.

	PEO-1	PEO-2	PEO-3	PEO-4	Total
DM1	3	2	1	0	6
DM2	3	1	1	1	6
DM3	2	2	1	3	8
DM4	0	2	0	3	5

Table 2: Mapping of Department Mission (DM) with Program Educational Objectives (PEOs)

3 -Highlyrelated 2 -Medium 1 - Low

IV. <u>GRADUATEATTRIBUTES</u>

Graduates Attributes (GAs) form a set of individually assessable outcomes that are the components indicative of the graduate's potential to acquire competence to practice at the appropriate level. The GAs are examples of the attributes expected of a graduate from an accredited programme. The Graduate Attributes of a Chemist are as follows:

- **GA-1: Disciplinary Knowledge:** Apply knowledge of chemistry along with mathematics, physics and other domains appropriate to the programme.
- **GA-2: Problem analysis and solution:** Identify, formulate, analyse and solve problems pertaining to chemistry by interdisciplinary approach
- **GA-3: Design / Development of solutions:** Design and develop solutions for problem with appropriate consideration to public health, safety, environment and society.
- **GA-5: Tool usage:** Acquire, select, manipulate relevant techniques, resources and ICT tools to interpret solutions to the problems .
- **GA-6: Ethics and Social responsibility:** Practice ethical codes as a chemistry professional and realize the responsibility to environment and society.
- **GA-7: Effective Communication:** Professional communication with the society to comprehend and formulate reports, documentation, effective delivery of presentation and responsible to clear instructions.
- **GA-8: Individual and teamwork:** Perform as an individual and as a leader in diverse teams and in multi-disciplinaryenvironment.
- **GA-9: Lifelong learning:** Recognize the need and have the ability to engage in independent learning for continual development as achemist.

V. <u>PROGRAMME OUTCOMES(PO'S)</u>

The Graduates will be able to

PO-1: understand how scientific and mathematical knowledge continually evolve and that is Course tochange.

- PO-2: identify and apply universal chemical laws to the problem.
- PO-3: communicate effectively (written /oral) and work effectively as an individual or team.
- **PO-4:** understand the impact and ethics of scientific discoveries on influencing society locally and globally.
- **PO-5:** work effectively in bringing multidisciplinary ideas to diverse professional environment.
- PO-6: find, collect and assess scientific-based information its relevance and reliability.

PO-7: design and perform experiments and thereby analyse and interpret data.

PO-8: use techniques, tools and skills necessary for emerging technologies.

GA	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Total
Disciplinary	3	2	1	1	1	2	2	2	14
Knowledge									
Problem analysis	3	2	0	0	1	1	3	2	12
Design / Development	2	1	0	1	2	3	3	2	14
of solutions									
Tool usage	1	1	1	2	1	2	3	3	14
Environment and	2	2	1	1	2	2	2	2	14
sustainability									
Ethics and Social	1	1	1	3	2	2	1	1	12
responsibility									
Effective	1	1	3	1	2	1	2	2	13
communication									
Individual and	2	2	1	2	2	2	2	1	14
teamwork									
Lifelong learning	3	2	1	1	2	2	2	2	15

 Table 3: Mapping of Graduate Attributes (GA) with Program Outcomes (PO)

				(1)	US <i>j</i>				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	Total
PEO-1	3	3	1	1	2	3	2	2	17
PEO-2	3	3	1	1	2	2	2	2	16
PEO-3	2	3	1	1	1	2	2	2	14
PEO-4	1	2	1	3	1	3	2	1	14
3	-Highlyr	elated		2 -N	Medium		1 - Low	1	

Table 4: Mapping of Program Educational Objectives (PEOs) with Program Outcomes (POs)

3 -Highlyrelated 2 -Medium

CURRICULUM AND SYLLABUS FOR B.Sc. (Chemistry) - BACHELOR OF SCIENCE (THREE YEAR - FULL TIME) REGULATION - 2018

(Applicable to the students admitted from the academic year 2018-2019 onwards)

		SEMESTER I						
Туре	Course Code	Course Title	L	Т	Р	SS	Η	С
AECC 1	XGL101	Communication Skills in English	2	0	0	2	4	2
LAN 1	XGL102A/ XGL102B	Ariviyal Tamil/Comprehensive English	3	0	0	0	3	3
CC 1	XMG103	Algebra, Trigonometry and Transform	4	1	0	0	5	5
CC 2 (DSC 2A)	XCY104	Fundamental Concepts of Chemistry	3	1	0	0	4	4
CC 3 (DSC 3A)	XCY105	Inorganic Chemistry I	3	1	0	0	4	4
UMAN 1	XUM106	Human Ethics, Values, Rights and Gender Equality	0	0	0	3	3	0
CC 2 Lab	XCY107	Volumetric Analysis, Practical -I	0	0	4	0	4	2
		Total	15	3	4	5	27	21

		SEMESTER II						
Туре	Course Code	Course Title	L	Т	Р	SS	Н	С
AECC 2	XGL201	English for Effective Communication	2	0	0	2	4	2
AECC 3	XES202	Environmental Studies	2	0	0	1	3	2
CC4	XMG203	Calculus and Differential Equations	4	1	0	0	5	5
CC 5 (DSC 2B)	XCY204	Organic Chemistry I	3	1	0	0	4	4
CC 6 (DSC 3B)	XCY205	Physical Chemistry I	3	1	0	0	4	4
CC 5 Lab	XCY206	Volumetric Analysis Practical- II	0	0	4	0	4	2
		Total	14	3	4	3	24	19

		SEMESTER III						
Туре	Course Code	Course Title	L	Т	Р	SS	Н	C
SEC 1	XCY301	Water Quality Analysis	1	0	2	1	4	2
CC7	XCY302	Fundamental Physics	3	1	0	0	4	4
CC 8 (DSC 2C)	XCY303	Inorganic Chemistry II	3	1	0	0	4	4
CC 9 (DSC 3C)	XCY304	Organic Chemistry II	3	1	0	0	4	4
GE 1		*Open Elective - To be chosen by student	3	0	0	0	3	3
CC7 lab	XPG 305	Fundamental Physics Practical	0	0	4	0	4	2
UMAN 2	XUM306	Disaster Management	0	0	0	3	3	0
CC 8 Lab	XCY307	Semi Micro Inorganic Qualitative Analysis Practical III	0	0	4	0	4	2
Minor course 1 *Extra credit		Office Automation (15 Hours)						1*
		Total	13	3	10	4	30	21+1*

		SEMESTER IV						
Туре	Course Code	Course Title	L	Т	Р	SS	Η	С
SEC 2	XCY401	Pharmaceutical Chemistry	1	0	2	1	4	2
CC10	XCY402	Modern Physics	3	1	0	0	4	4
CC 11 (DSC 2D)	XCY403	Physical Chemistry II	3	1	0	0	4	4
CC 12 (DSC 3D)	XCY404	Inorganic Chemistry III	3	1	0	0	4	4
GE 2		*Open Elective - To be chosen by student	3	0	0	0	3	3
CC10 lab	XPH405	Modern Physics Practical	0	0	4	0	4	2
CC11 Lab	XCY406	Inorganic Quantitative Analysis PracticalIV	0	0	4	0	4	2
Minor course 2 *Extra credit		Animation Software I (15 Hours)						1*
		Tota	13	3	10	1	27	21+1*

		SEMESTER V						
Туре	Course Code	Course Title	L	Т	Р	SS	Н	С
SEC 3	XCY501	Clinical Chemistry	1	0	2	1	4	2
DSE 1A	XCY502A	Phyto Chemistry	2	1	0	0	1	4
DSE IA	XCY502B	Forensic Science	5	1	0		4	4
DSE 2A	XCY503A	Analytical Methods in Chemistry	2	1	0	0	1	1
DSE 2A	XCY503B	Agricultural Chemistry	5	1	0		4	4
DEE 2A	XCY504A	Computer Applications in Chemistry	2	1	0	0	1	1
DSE SA	XCY504B	Programming in C	3	1	0		4	4
GE 3		*Open Elective - To be chosen by student	3	0	0	0	3	3
DSE 1A Lab	XCY505	Organic Qualitative Analysis PracticalVA	0	0	4	0	4	2
CC lab	XCY506	Physical Chemistry Practical VB	0	0	4	0	4	2
Minor course 3		Animation Software II (15 Hours)						1*
*Extra credit		Animation Software II (15 flours)						1.
* Extra credit	_	IPT (21 days)						2*
		Tota	l 13	3	10	1	27	21+3*
		SEMESTER VI						
Туре	Course Code	Course Title	L	Т	Р	SS	H	С
SEC 4	XCY601	Renewable Energy	1	0	2	1	4	2
DSE 1B	XCY602A	Industrial Chemistry	3	1	0	0	Δ	4
DSE ID	XCY602B	Material Chemistry	5	1	0		+	+
DSE 2B	XCY603A	Food Chemistry	3	1	0	0	1	1
DSE 2D	XCY603B	Polymer Chemistry	5	1	0		4	4
DSE2B lab	XCY604	Organic Qualitative Analysis PracticalVI	0	0	4	0	4	2
CClab	XCY605	Physical Chemistry Practical VIA	0	0	4	0	4	2
DSE 3B	XCY606	Project	0	0	0	0	8	6
	_	NSS/NCC/RRC						
		Total	7	2	10	1	28	20

DSC: Department Specific Core SEC: Skill Enhancement course GE: Generic Elective DSE: Discipline Specific Elective AECC: Ability Enhancement Compulsory Course UMAN: University Mandatory

*Extra Credit

L-Lecture

T-Tutorial

SS -SelfStudy

P–Practical

C-Credit

<u>Summary</u>

Semester	S1	S2	S 3	S4	S 5	S 6	P1	P2	Others
I	AECC1	LAN1	CC1	CC2 (DSC2A)	CC3 (DSC3A)	UMAN1	CC2 Lab		
II	AECC2	AECC3	CC4	CC5 (DSC2B)	CC6 (DSC3B)			CC5 Lab	
ш	SEC1	CC7	CC8 (DSC2C)	CC9 (DSC3C)	GE1	UMAN2	CC7 Lab	CC8 Lab	*Minor Course
IV	SEC2	CC10	CC11 (DSC2D)	CC12 (DSC3D)	GE2		CC10 Lab	CC11 Lab	*Minor Course
V	SEC3	DSE1A	DSE 2A	DSE3A	GE3		CC Lab	CC lab	IPT* *Minor Course
VI	SEC4	DSE1B	DSE 2B	DSE3B (PROJECT)			CC Lab	CC lab	NSS/ NCC

* Extra Credit

Total Number of Courses proposed with the credits is given below:

S. No.	Type of Course	Numbers	Total Credit	Credits As per UGC norms
1	AECC (Theory & Lab)	03	06	04
2	Core Course (Theory & Lab)	12	66	72
3	DSE (Theory & Lab)	06	30	36
4	SEC	04	08	08
5	GE	03	09	-
6	UMAN	02	00	-
7	LAN	01	03	
	IPT & Minor Courses /NSS/NCC	4*	4*	-
	Total	31 + 4*	122 + 4*	120

*Extra credit

Branch	Total Credit	Core DSC (%)	DSE(%)	SEC (%)	AECC (%)	GE (%)	UMAN (%)	LAN	IPT& NSS/NCC
B.Sc.(Chemistry)	122+4*	66 (54.1%)	30 (24.6%)	8 (6.6%)	6 (4.9%)	9 (7.4%)	0 (0%)	1 (0.8%)	4* (Extra Credit)

* Extra Credit

DSC: DepartmentSpecificCore SEC: SkillEnhancementcourse DSE: DisciplineSpecificElective AECC: Ability Enhancement CompulsoryCourse GE: GenericElective UMAN: UniversityMandatory

Course Vs PO Mapping

	С	Р	Α	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	L	Т	Р	С
XCY101															
XCY102															
XCY103															
XCY104															
XCY105															
XUM106															
XCY107															
XCY201															
XES202															
XCY203															
XCY204															
XCY205															
XCY206															
XCY301															
XCY302															
XCY303															
XCY304															
XCY305															
XUM306															
XCY401															
XCY402															
XCY403															
XCY404															
XCY405															
XCY406															
XCY501															
XCY502															
XCY503															
XCY504															
XCY505															
XCY506															
XCY601															
XCY602			1			1									
XCY603													1	1	1
XCY604		1					İ		İ				İ	İ	İ
XCY605															
XCY606							1		1						

	SEMESTER I					SS	Р	С	
COUF	RSE CODE	XCY104	XCY104			0	0	4	
COUF	RSE NAME	FUNDAMENTAL CONCEPTS OF CH	UNDAMENTAL CONCEPTS OF CHEMISTRY L					Η	
C: P:	Α	3.2:0:0.8	8 3					4	
COU	RSE OUTCON	AES:	Domain				Leve	1	
CO1	<i>Explain</i> the provide the provided the provi	rinciple of atomic structure and basics of hanism	Cognitive	Э		Ur	nderst	and	
CO2	² <i>Describe</i> the periodic properties of various elements Cognitiv		Cognitive	Э		Re	emerr	nber	
CO3	Interpret IUP	AC nomenclature of compounds.	Cognitive Affective	9 9		Apply Receivin		, in	
CO4	4 <i>Describe</i> the physical properties of dipole moment, polarizability and magnetic properties. Cognitiv			e e		Re Re	emerr espon	ıber ding	
CO5	Apply and Ide	entify the various analytical methods for	Cognitive	Э		Re	emerr	ıb	
	quantitative a	nalysis.					er		
							Apply	y	
	UNIT - I ATOMIC STRUCTURE AND BASIC QUANTUM MECHANICS10+3								
	equation and its principle. Photo postulates of qu principle – Hun electronic config	derivation – The Davisson and Germer exp electric effect - Einstein photoelectric equa antum mechanics – The Schrodinger wave d's rule of maximum spin multiplicity – Par gurations of elements.	tion – Compto equation-Quar uli's exclusion	n effe ntum 1 princ	erg's u ect. Qu numbo ciple –	incerta uantui ers. A - n + l	ainity n theo ufbau rule -	ory –	
	UNIT - II PER	IODIC TABLE						6+3	
	Modern periodic law – modern periodic table – classification of elements based on electronic configuration. Fundamental properties like atomic size, valency, ionization energy, ionic radius, electron affinity, electronegativity, metallic and nonmetallic character - variation of the above fundamental properties – explanation for the periodic variation of the fundamental properties – diagonal relationship.								
		JAMENIALS OF ORGANIC CHEMISTRY	• • •	• .•	-	•		9+3	
	IUPAC Nomenclature of organic compounds Molecular weight determination of simple organic acid and bases – Silver salt and platonic chloride methods. Calculation of empirical and molecular formula using percentage composition of elements and molecular weight. Fundamental concepts - Homolytic fission and Heterolytic fission of carbon-carbon bonds - Reaction intermediates: Formation and stability of Free radicals, carbonium ions and carbanions – nucleophilic and electrophilic reagents. Types of reactions-Substitution, addition, elimination, rearrangement and polymerization with suitable examples.Inductive effect and electromeric effect: xplanation with								
	UNIT –IV PHY	ZSI. ZSICAL PROPERTIES AND CHEMICA	AL CONSTIT	UTIC	ONS.		1	0+3	

Dipole moment: Definition – Experimental determination - Calculation of percentage of ionic character of HF and HCl –Dipole moment and molecular structure: CO2, H₂O,NH3 and CH4.
 Polarizability: Definition – polarization of a molecule – molar polarization – Clausius-Mosotti equation. Magnetic properties: Paramagnetic, diamagnetic and ferromagnetic substances and their characteristics – magnetic permeability – magnetic susceptibility – specific and molarmagnetic susceptibilities – determination of magnetic susceptibility by Gouy's method.

	UNIT -V ANAL	YTICAL METHODS			40.0				
				~	10+3				
1	Qualitative Inorganic Analysis – Dry Test, flame test, cobalt nitrate test–wet confirmatory test for								
	acid radicals, interfering acid radicals – elimination of interfering acid radicals. Solubility product,								
	common ion effec	et, complexation, oxidationre	duction reactions involved	in identification of a	nions				
	and cations – sepa	aration of cations into groups	– Volumetric analysis – pr	eparation of standar	d				
	solutions –normal	lity, molarity and molality by	titrimetric reactions – acid	base, redox, precipi	tation				
	and complex metr	ric titrations –indicators – eff	ect of change in pH – selec	tion of suitable indic	cators.				
	LECTURE	TUTORIALS	PRACTICALS	TOTAI					
	45	15		60					
	TEXT BOOKS								
]	1. PuriB.R.,,Sh	armaL.R.,KaliaK.K.,Principl	esofInorganicChemistry,(2	3 rd edition),New					
	Delhi, Shoban La	l Nagin Chand & Co., (1993)							
	2. Lee J.D., Conc	ise Inorganic Chemistry, UK,	Black well science(2006).						
	3. Puri B.R., Shar	rma L.R., Pathania M.S.,Prin	ciples of Physical Chemistr	y, (23rdedition), Ne	W				
	Delhi, Shoban La	l Nagin Chand & Co.,(1993).							
	4. Glasstone S., L	ewis D., Elements of Physical	l Chemistry, London, Mac	Millan &Co.Ltd.					
	REFERENCES								
1	1. Morrison R.T.	and Boyd R.N., Organic Che	mistry (6th edition), New Y	ork,Allyn					
	& Bacon Ltd., (19	976).							
	2. Bahl B.S. and A	Arun Bahl, Advanced Organi	c Chemistry, (12th edition)	, NewDelhi,					
	Sultan Chand & C	Co.,(1997).							
	3. Frank J. Welch	er and Richard B. Hahn, Sem	i micro Qualitative Analys	is,New					
	Delhi, Affiliated I	East-west Press Pvt. Ltd.(196	9).						
	4. G.D. Tuli, R.D	. Madan, S.K. Basu, Satya Pi	akash, Advanced Inorgani	c Chemistry,Volume	e 1,				
	(5th edition), New Delhi, S. Chand & Company Ltd,(2014								
	E RESOURCES								
	1. http://www.mo	oc-list.com/course/chemistry	-minor-saylororg						
	2. https://www.ca	nvas.net/courses/exploring-cl	hemistry						
	3. http://freevideo	lectures.com/Course/3001/C	hemistry-I						
	4. http://freevideo	lectures.com/Course/3167/C	hemistry-II						

SEMESTER I					Т	SS	Р	С
COU	RSE CODE	XCY105		3	1	0	0	4
COU	RSE NAME	INORGANIC CHEMISTRY	Y	L	Т	SS	Р	Η
C: P:	Α	2.8:0.4:0.8		3	1	0	0	4
COU	RSE OUTCON	AES:	Domain				Level	l
CO1	Recall and E bonding; Disp molecules usi	xplain the basic concepts ofionic play the shapes of simple inorganic ngVSEPR theory	Cognitive Psychomotor			R∉ Ur	emem r nderst d Set	be an
CO2	2 Summarize and Report extraction, properties and uses of I A and IIA group s-block elements. Cognitive Affective					Un d Re g	dersta spon	an din
CO3	<i>Explain</i> the e various metal chemical prop	xtraction and purification process of s and Interpret their physical and perties.	Cognitiv e Affective			Ūr d Re	nderst I Appl spon g	an y din
CO4	Describe the application of	concept of acids and bases and the various concepts.	Cognitive Psychomotor			A P€ n	Analys ercept	sis tio
CO5	<i>Identify</i> the v consequence	arious radioactive process and their s	Cognitive			Re	emem	ber
	UNIT - I CHE	MICAL BONDING	•					10+3
	negativity – Pol Transitions from of simple inorga – Principles of I Application of I	arizing power and Polarisability – partial ic n ionic to covalent character and vice versa anic molecules (BeCl2, SiCl4, PCl5, SF6,I nybridization – BeCl2 – MO Theory – Bond MO Theory to H2,He2,N2,O2,HF and CO –	nic character f – Fajan's rule. F7, NH3, XeF6 ding and antibo – Comparison of	from e VSE 5, BF onding of VB	PR T 3,H2C g orbi) nega heory) - V tals – MO th	utivity – Sha BThe neorie	apes bory s.
	UNIT - II CHE	EMISTRY OF S-BLOCK ELEMENTS						6+3
	Position of Hydrogen in the Periodic Table, atomic hydrogen, nascent hydrogen, occluded hydrogen and uses of hydrogen. General characteristics of s-block elements – General characteristics of Group IA – diagonal relationship between Li and Mg – Physical and Chemical properties – Uses – Preparation of NaOH, Na ₂ CO ₃ , NaHCO ₃ (Laboratory and Industrial methods) – Properties – Uses. General characteristics of Elements of Group II A – diagonal relationship between Be and Al —Physical and Chemical properties –Uses – Preparation and uses ofMg: MgCO ₃ , MgSO ₄							
	UNIT – III BASI	C PRINCIPLES OF METALLLURGY						9+3
	Ores and minerals – concentrating the ore by gravity separation, froth flotation and magnetic separation – Types of furnaces -Roasting– Calcination – Smelting – Flux – Purification by electrolytic refining, zone refining and Van-Arkel vapour phase refining with suitable examples– Alumino thermic process. Group–IA: Extraction of lithium and its uses - Diagonal relationship of Lithium with Magnesium Group–IIA: Extraction of Beryllium and its uses –Diagonal relationship of Beryllium with Aluminium Group–IB: Extraction of copper and its uses – Extraction of silver and its uses. Group-VA: Nitrogen: Ammonia – manufacture, properties, uses andstructure. Nitric Acid: Manufacture of Nitric acid – Action of nitric acid on metals							
	UNIT –IV ACI	IDS AND BASES					1	0+3

Lewis concept – Classification of Lewis acids – Lux-Flood concept – Hard-Soft acid base concept
and its applications. Non- aqueous solvents- Classification of solvents- Neutralization reaction and
solvolysis in liquid ammonia- Metal- ammonia solutions. Neutralisation, solvolysis and redox
reactions.

UNIT -V NUCLEAR CHEMISTRY10+3								
Constitution of nu	clei – stability of nuclei and	(n-p) ratio – magic numb	er– ma	ss defect and binding				
energy – mass	- energy relationship. Radi	loactivity: Natural radio	activity	y — Soddy's group				
displacement law – Radioactivity equilibrium – Rate of radioactive disintegration – half life period								
and average life period– radioactive disintegration series. Nuclear fission: Theory – applications –								
principle of atom	bomb. Nuclear fusion: Theo	ry – Solar and Stellar ene	ergy – j	principle of hydrogen				
bomb Application	ns of radioactivity: medicine	e – agriculture – industr	y – str	ructural elucidations-				
carbon dating- cy	clotron.							
LECTURE	TUTORIALS	PRACTICALS		TOTAL				
45	15			60				
TEXT BOOKS								
1. Lee J.D.,Conc	ise Inorganic Chemistry, UK,	Black well science(2006	j).					
2. Bahl B.S. and A	arun Bahl, Advanced Organic	Chemistry, (12th edition), New	Delhi,Sultan				
Chand & Co.,(200	17).							
REFERENCES								
Puri B.R., Sharma	L.R., Kalia K.K., Principles of	of Inorganic Chemistry, (2	23rd ed	ition), New				
Delhi, Shoban Lal	Nagin Chand & Co.,(2003).							
2. Puri B.R., Sharr	na L.R., Pathania M.S., Princ	iples of Physical Chemist	ry, (23	rd edition),New				
Delhi, Shoban Lal Nagin Chand & Co.,(2005).								
3. Glasstone S., Lewis D., Elements of Physical Chemistry, London, Mac Millan & Co.Ltd.								
4. Morrison R.T. and Boyd R.N., Organic Chemistry (6th edition), New York, Allyn & Bacon								
Ltd.,(2003).								

SEMESTERII									
Course Code	Course Name	L	Т	Р	С				
XCY204	ORGANIC CHEMISTRY – I	3	1	0	4				
C:P:A	2.8:0.4:0.8	L	Т	Р	Н				
		3	1	0	4				

OURS	E OUTCOMES	DOMAIN	L	EVEL
CO1	<i>Explain</i> the preparation, properties and applications of	Cognitive	Unde	erstand
	alkenes, alkynes and theirderivatives.			
CO2	Describe the preparation with mechanism, properties and applications of alkocols, ethers and their derivatives. Estimate hydroxy and alkoxy groups.	Cognitive	Rem	ember
CO3	O3 <i>Explain</i> the preparation with mechanism, properties and naming reactions of aldehydes, ketones & carboxylic acid and their derivatives.			y eivin
CO4	<i>Describe</i> the concepts of covalent bonding and <i>explain the</i> structure of hybridization.			ember oonding
CO5	<i>pply</i> and <i>Identify</i> the various stereo chemical concepts. Cognitive Appl Rem			
UNIT	I COVALENT BONDING AND STRUCTURE	<u> </u>	÷	
Covalent bonding – Concept of hybridization – Structure of organic molecules based on sp ³ , sp ² and sp hybridization – Covalent bond properties of organic molecules: bond length, bond angle, bond energy, bond polarity, dipolemoment, inductive, mesomeric, electromeric,				9+3
UNIT IIALIPHATIC HYDROCARBONS AND ALKYL HALIDESAlkenes: Ozonolysis, Hydroboration and polymerization with suitableexamples. Dienes: Classification – preparation, properties and usesButadiene Alkynes: Acidity of alkynes Alkyl halides: S _N 1 and SMechanism – E1 and E2 Mechanism – Hofmann and Saytzeff's rule. Polymerization and uses of vinyl chloride, allyl chloride and allyliodide. Synthetic applications of Grignard reagents.			table es of S _N 2 Poly pons:	9+3

UNIT IV ALIPHATIC ALCOHOLS: Definition: Rectified spirit – Absolute alcohol – Methylated spirit – Power alcohol.Preparation, properties and uses of allyl alcohol. Polyhydric alcohol: Estimation of number of hydroxyl groups in a polyhydric alcohol: Estimation of alkoxy groups – Zeisel's method – preparation and uses of ethyl mercaptan, diethyl ether, sulphonal and mustard gas. Phosphorous ylides – preparation and properties –Wittigreaction. Unit V ALDEHYDES, KETONES AND CARBOXYLIC ACID Preparation of aldehydes and ketones from fatty acids – Rosenmund reduction – Stephen's method – Mechanism of nucleophilic addition to Carbonyl compounds – Hemiacetal and Acetal formations – Cyanohydrin formation – Meerwein-Pondorf-Varleyreduction – Oppaenaur idation – preparation of Acrolein, Crotonaldehyde, Chloral , Hydroxy acetone and Acetylacetone Carboxylic acids and their derivatives: Structure of carboxylic acids – acidity of carboxylic acids – effect of subsituents on acidity – preparation and properties of mono, di and tri chloro carboxylic acids – Hydroxy acids. Dicarboxylic acids: Preparation of Malonic acid and Malonic ester – Synthetic applications of diethyl malonate – Action of heat on dicarboxylic acids	UNIT III	CHEMISTRY OF CY Alicyclic compounds – Baeyer's strain theory a differences between con Sawhorse and Newman ethane, n-butane and 1, acid and fumaric acid – Optical isomerism: defi optical isomerism of co tartaric acid – enantiom forms –racemisation – inversion – asymmetric configurations by R and	CLOALKAN general method and its modifica nfigurationand projection form 2-dichloro etha aldoximes and inition: optical mpounds conta iners and diaster resolution synthesis – chi d Snotations.	ES AND STRE ds of preparation ations. Conforma conformation mulae – conform ane Geometrical ketoxime activity and opti- aining asymmetr eoisomers – racco on of racemic mi- irality – specific	O ISOMERISM n of cycloalkanes ational analysis: Fischer and national analysis of isomerism – male s E-Znotations. cal isomerism – ic carbon atom – emic and meso atture – Walden ations of absolute	- of eic 10+3	
Unit V ALDEHYDES, KETONES AND CARBOXYLIC ACID Preparation of aldehydes and ketones from fatty acids – Rosenmund reduction – Stephen's method – Mechanism of nucleophilic addition to Carbonyl compounds – Hemiacetal and Acetal formations – Cyanohydrin formation – Meerwein-Pondorf-Varleyreduction – Oppaenaur idation – preparation of Acrolein, Crotonaldehyde, Chloral , Hydroxy acetone and Acetylacetone Carboxylic acids and their derivatives: Structure of 10+. carboxylic acids – acidity of carboxylic acids – effect of subsituents on acidity – preparation of acrylic acid and crotonic acid. Halogensubstituted acids: Preparation and properties of mono, di and tri chloro carboxylic acid and Malonic ester – Synthetic applications of diethyl malonate – Action of heat on dicarboxylic acids PRACTICAL TOTAL	UNIT IV	alcohol – Methylated spirit – Power alcohol.Preparation, properties and uses of allyl alcohol. Polyhydric alcohol: Estimation of number of hydroxyl groups in a polyhydric alcohol.Ethers:Estimation of alkoxy groups – Zeisel's method – preparation of chlorex and vinyl ether. Thioalcohols and thioethers: Preparation and uses of ethyl mercaptan, diethyl ether, sulphonal and mustard gas. Phosphorous ylides – preparation and properties –Wittigreaction.					
LECTURE FILTORIAL PRACTICAL FICTAL	Unit V	it V ALDEHYDES, KETONES AND CARBOXYLIC ACID Preparation of aldehydes and ketones from fatty acids – Rosenmund reduction – Stephen's method – Mechanism of nucleophilic addition to Carbonyl compounds – Hemiacetal and Acetal formations – Cyanohydrin formation – Meerwein-Pondorf-Varleyreduction – Oppaenaur idation – preparation of Acrolein, Crotonaldehyde, Chloral , Hydroxy acetone and Acetylacetone Carboxylic acids and their derivatives: Structure of carboxylic acids – acidity of carboxylic acids – effect of subsituents on acidity – preparation of acrylic acid and crotonic acid. Halogensubstituted acids: Preparation and properties of mono, di and tri chloro carboxylic acids – Hydroxy acids. Dicarboxylic acids: Preparation of Malonic acid and Malonic ester – Synthetic applications of diethyl malonate – Action of heat on dicarboxylic acids					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			LECTURE 45	1010KIAL 15	PRACTICAL 0	101AL 60	

TEXT BOOKS

- Morrison R.T. and Boyd R.N., Organic Chemistry (6th edition), New York, Allyn & Bacon Ltd., (1976).
- 2. Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (12th edition), New Delhi, Sultan Chand & Co.,(1997).

- 3. Organic Chemistry Volume I", I.L. Finar
- 4. Organic Chemistry Volume II", I.L. Finar
- 5. Organic Chemistry –J.Clayden
- 6. Organic Chemistry JerryMarch
- 7. Organic Chemistry Mcmuray
- 8. Organic Chemistry", P.L. Soni
- 9. Advanced Organic Chemistry", B.S.Bahl and ArunBahl
- 10. Organic Chemistry", R.T.Morrison and R.W.Boyd

REFERENCES

1. Organic Chemistry, Paula, Yurkanis and Bruice

2. Mukul C. RayReaction Mechanisms in OrganicChemistry

3. P.L. Kalsi, Organic Reactions and TheirMechanisms

E-REFERENCES

https://www.mooc-list.com/course/organic-chemistry-isaylororghttps://www.canvas.net/courses/exploringchemistryhttps://www.youtube.com/watch?v=nB9yqj-ZcAkhttp://freevideolectures.com/Course/3001/Chemistryl/3https://ocw.mit.edu/courses/chemistry/5-12-organic-chemistry-i-spring-2005/http://freevideolectures.com/Course/3001/Chemistry-Ihttp://freevideolectures.com/Course/2384/Freshman-Organic-Chemistry

SEMESTERII									
Course Code	Course Name	L	Τ	Р	С				
XCY205	PHYSICAL CHEMISTRY - I	3	1	0	4				
C:P:A	2.8:0.4:0.8	L	Т	Р	Н				
		3	1	0	4				

SYLLABUS:

L

COUR	SE OUTCOMES	DOMAIN	LEVEL		
CO1	Classify the types of Molecular velocity of gases and	Cognitive	Understand		
	kinetic theory of gases; <i>Derive</i> vanderwalls equation of real gases.				
CO2	Apply and Identify the structure and properties of solid state.	Cognitive	Remember Apply		
CO3	Apply and Identify the structure and properties of liquid crystals and colloids	Cognitive Affective	Remember Apply		
CO4	Describe the concepts of colloidal state and explain the types of Emulsions.	Cognitive	Remembe r Respondin g		
CO5	O5 <i>Identify</i> the principles of chemical equilibrium and <i>explain</i> the theory behind the catalysis.				
	 Kinetic theory of gases – equation of kinetic theory of gases – derivation of gas laws from the equation of kinetic theory of gases. Ideal gases and real gases – deviations of real gases from ideal behaviour – Van der waal's equation (Derivation) – Significances of van der Waal's constants. P-V isotherms – Andrew'sexperiment–critical states of gases Definition and determination of the critical constants – relation between van der Waal's constants and critical constants, Kinetic theory of gases: Mean free path – collision frequency – Definition and problems involving RMS velocity, Most probable velocity and Average velocity – Boltzman distribution of molecular velocities (No derivation) 				
UNIT IISOLID STATE Crystallography — Definition: unit cell, crystal lattice and interface angle Crystallographic systems: Bravis lattices – simple, cubic, face centered cubic and body-centered cubic systems. Types of crystal Ionic crystal – Structure of NaCl – Molecular crystals: Structure of Ic Covalent crystals: structure of diamond and graphite – metac crystals.Bonding in crystals – electrical properties - Conductor semiconductors and insulators – super conductors – simple explanat with examples – Defects incrystals.			cial ace- als: ce – allic tors, tion		

UNIT III	LIQUID STATE, LIQ	UID CRYSTA	ALS -AND AD	SORPTION:			
	Theory of liquids – free	volume of liqu	uids – Vapour p	ressure – Surface			
	ension, effect of te	mperature on	surface tens	ion, parachor	_		
	Viscosity, effect of temp	erature on visc	cosity – hole the	ory – Reynolds	9+3		
	number – structure of li	quids.Trouton'	s rule and its sig	nificance			
	Classification of Liquid	crystals- Tran	sformation into	the mesomorphic			
	states –						
	Definitions – Adsorbat	e, adsorbent ar	nd interface – D	vistinction betwee	n		
	physisorption and cher	nisorption – S	urfactants.Adsor	rption of gases o	n		
	solids – Freundlich, La	ngmuir and BE	T adsorption isc	otherms			
	Applications of adsorpt	ions.					
UNIT IV	 COLLOIDAL STATE: types of colloids – sols – Lyophilic sols and lyophobic sols – properties of colloids – optical property (Tyndall effect) – kinetic property (Brownian movement) – Electrical properties like electrical double layer, zeta potential, electrophoresis and electro- osmosis – stability of colloids – Coagulation – protective colloids – Gold number – flocculation values – Hofmeisterseries. GELS: Elastic and non-elastic gels – imbibition – syneresis – thixotropyEmulsions: Definition – types of emulsions – emulsifiers – 						
	thixotropyEmulsions: Definition – types of emulsions – emulsifiers – Bancroft's rule HLB number. Applications of colloids: Cottrel precipitator – Sewage disposals – detergent action of soaps – artificial rain – formation of delta – smoke screens.						
UNIT V	CHEMICAL EQUILI	BRIUM: Rev	ersible and irrev	versible reactions	_		
 statement of law of mass action – Derivation of law of mass action from kinetic theory – Relationship between Kp and Kc (derivation). Applications of Law of mass action to the equilibria involving the formation of NH₃, dissociation of CaCO₃ and the dehydration of CuSO₄.5H₂O. Lechatelier's principle: statement – application to the formation of NH₃. CATALYSIS: Homogeneous and heterogeneous catalysis – promoters andcatalytic poisons – auto catalysis – Acid-base catalysis – Enzyme catalysis –Kinetics of enzymed catalysed reaction 					n 8+3). e of e - we d		
	•	LECTURE	TUTORIAL	PRACTICAL	TOTAL		
		45	15	0	60		

TEXT BOOKS

- 1. Glasstone S., Lewis D., Elements of Physical Chemistry, London, Mac Millan & Co.Ltd.
- 2. Principles of Physical Chemistry", B.R.Puri and L.R.Sharma
- 3. Principles of Physical Chemistry", B.R.Puri, L.R.Sharma and M.S.Pathania
- 4. Physical Chemistry", N.Kundu and SN.Jain
- 5. Physical Chemistry", Peter Atkins Julio depaula

REFERENCES

- 1. Physical Chemistry: A Molecular Approach Donald A.McQuarrie
- 2.PhysicalChemistry.G.W.Ball

3. Solid state and its applications, Anthony. R.West.4. Physical Chemistry Volume-1, A. K.Nag.

E-REFERENCES

1. <u>https://www.youtube.com/watch?v=A1p4j_aHdbw</u>

2.<u>https://www.youtube.com/watch?v=gvq2QZ38n9U</u>

3.https://www.mooc-list.com/course/Physical-chemistry-i-saylororg

COURSE NAME		Volumetric Analysis Practical-II XCY 206	L	Т	Р	С
PRER	EQUISITE	Nil	0	0	3	2
C:P:A		1: 0.8:0.2	L	Т	P	Н
			0	0	3	3
COUR	SE OUTCOME	S	D	OMAIN	L	EVEL
CO1	<i>Identify</i> the v	arious Metals in the solution.	Cogniti Psycho	ve motor	Reme Perce	ember eption
CO2	Estimate the method by extended indicators.	amount of metal ions using volumetric using various internal and mal	Cogniti Psycho	ive motor	Understand So	
CO3	<i>Estimate</i> the complex by c volumetric me	amount of metal ions in terms of omplexometric titrations using ethod.	Cogniti Psycho Affecti	CognitiveApplPsychomotory SetAffectiveReceiving		iving
VOLU	METRIC AN	ALYSIS LAB-II				3 hours each exp
 II. Perr 1. Estir 2. Estir 3. Estir 4. Estir III. Did 	manganimetry nation of Ferro nation of Ferro nation of Oxali nation of Calciu	7. us iron in Mohr's salt. us and Ferric iron in amixture. cacid. um.				
5. Estir	nation of Ferro	usIron.	nalindica	tors		
IV. Iod	lo and Iodime	try.				
7. Estir	7. Estimation ofCopper.					
8. Estir	nation of Potas	siumDichromate.				
9. Estir	nation of Arser	niousOxide.				
V.Arge	entometry.	22				

10. Estimation of Chloride (in neutral and acid media)						
VI. Complexometric Titrations.						
11. Estimation of Zn, Mg and Ca ions using EDTA.						
	LECTURE	TUTORIAL	PRACTICAL	TOTAL		
HOURS	0	0	30	30		
TEXT BOOKS						
1. B.S. Furniss, A.J. Hannafor	d, V. Rogers, P	.W.G Smith and	A.R. Tatchell., "	Vogel's		
Textbook of practical Organ	nic Chemistry"	, (ELBS), 5th ec	ln.,2009.			
2. J. Bassett, R.C. Denney, G.	H Jeffery and J	. Mendham, " V	ogel's text book o	of Quantitative		
Inorganic Analysis (revised)". (ELBS). 6th	edn. 2007.	e	~		
	, (), (
REFERENCE BOOKS						
1 IB Vaday "Advanced Pra	ctical Physical	Chemistry" (G	oel Publishing Ho	use) 20th edn		
2001	etiear r nystear	chemistry , (O	oer i donsning 110	use), 20th cun.,		
2001.		1.01				
2. J.N. Gurtu and R. Kapoor,	Advanced Exp	erimental Chem	istry", Vol. I-Phys	sical, (S. Chand		
& Co), 1st edn.,2000.						
3. Sundaram, Krishnan, Ragha	wan, "Practica	l Chemistry (Par	rt II)", S. Viswana	athan Co.Pvt.,		
1996.						
E Resources - MOOCs:						
1. http://freevideolectures.co	m/Course/2380)/Chemistry-Lab	oratory-Techniqu	es		
2. https://www.youtube.com	m/watch?v=gzA	AgIIjHyqI				
3. https://www.youtube.com	n/watch?v=3AS	9Jwdpui4				

r

SEMESTERIII

COURSE CODE	COURSE NAME	L	Т	SS	P	С
XCY301	Water Quality Analysis	1	0	1	2	2
C:P:A	1:0.8:0.2	L	Т	SS	Р	Η
		1	0	1	2	4

COURSE OUTCOMES:

On the successful completion of the course, students will be able to

COURSE	OUTCOMES	DOMAIN	LEVEL		
CO1	Ensure the quantity and quality of water with	Cognitive	Understanding		
	respect to standards and their relation to public		Manipulation		
	health	Affective	Responding		
CO2	<i>Identify</i> the sources of water and <i>illustrate</i> the water	Cognitive	Understanding		
	transport and distribution		Applying		
CO3	<i>Classify</i> the cycles of decomposition of sewage and	Cognitive	Understanding		
	<i>Examine</i> the characteristics of sewage	Psychomotor	Manipulation		
CO4	<i>Describe</i> the function and principles of various water	Cognitive	Understanding		
	and waste water treatment units.	Affective	Responding		
CO5	Select the disposal methods for sewage and classify	Cognitive	Understanding		
	the different treatment methods for sludge.				
UNIT -I	Water Technology				
	Hardness of Water: types and estimation of hardness	s (problems) - inte	ernal		
	treatment, external treatment – demineralization p	process – desalina	ition 0		
	using reverse osmosis-				
UNIT -II	Sources and Transmission of Water				
	Public water supply schemes, Forms and properties	s of water –per ca	apita		
	demand - population forecasts - variation in demand pattern - water				
	quality – BIS and ISO specifications– water borne	diseases – plannin	g of		
	public water supplies.				
UNIT-III	Water Treatment				
	Layout of Treatment plants for conventional w	ater treatment p	lant.		
	Principles and Functions of Screen, Flash Mixer, Flocculator,				
	Sedimentation Tank, Slow and Rapid Sand Filters, and Disinfection				
	Process- advanced water treatment techniques.				
UNIT-IV	Waste Water Treatment				
	oxidation Characteristics and composition of	sewage - cycles	s of		
	decomposition of organic wastes - D.O, BOD	and COD and t	their 6		
significance. Treatment methods - Layout of waste water treat		water treatment p	lant-		
	Activated sludge process and its modifications; Tricking filters and				
	Rotating biological pond				
UNIT -V	Disposal Options				
	Land disposal - sewage farming practice - dilution	on - discharge	into 6		
	rivers, - oxygen sag - self-purification - eutrop	hication slu	ıdge		
	treatment - properties and characteristics of sludge -	sludge digestionar	nd		

drying beds					
Any five experiments decided by the course teacher 1. Determination of pH, turbidity and conductivity. 2. Determination of the available chlorine in bleaching powderand estimation of the residual chlorine. 3. Determination of optimum dosage of coagulant 4. Determination of Iron and Fluoride. 5. Determination of Phosphorous 6. Determination of hardness of water. 7. Determination of Total Solids and Suspendedsolids. 8. Determination of Biochemical OxygenDemand. 9. Determination of Chemical OxygenDemand					
 9. Determination of Chemical OxygenDemand. 10. Determination of Ammonia Nitrogen. Demonstration of Bacteriological analysis ofwater. 					
LECTURE	SS	PRACTICAL	TOTAL		
Toyt Books	15	30	60		
 Text Books Gurucharan Singh," Water supply and Sanitary Engineering", Standard Publishers Distributors, 2009 Garg, S.K., "Environmental Engineering I & II", Khanna Publishers, New Delhi2007 S.K. Garg, Wastewater Engineering, Khanna Publishers, New Delhi,2007 CPHEEO Manual on Water Supply AndTreatment, 1999 CPHEEO Manual on Sewerage And SewageTreatment 1993 					
Refernces					
 Karia G L & Christian R A, "Waste 2013. Rangwala, "Water Supply and San Pvt. LtdAnand,2011 	water Treatm itary Enginee	ent", Prentice Hall of India, N ring PB,24/e, Charotar Publis	Jew Delhi, hing house		
3. B.C. Punmia, Wastewater Engineer	ing, Volume	– II, Laxmi Publication2008			
 LinvilG.Rich, Unit operations of Sa 2007 	nitary Engine	eering, Tata Mcgraw Hill, Nev	v Delhi,		
5. StandardmethodsfortheExamination APHA and AWWA,USA,1989.	ofWaterandv	vastewater,17 th Edition,WPCF	,		

COURSE CODE	COURSE NAME	L	Т	Р	С
XCY303	Inorganic Chemistry II	3	1	0	4
C:P:A	3.2:0:0.8	L	Т	P	Η
		3	1	0	4

SYLLABUS:

COURSE OUTCOMES:

On the successful completion of the course, students will be able to

COUR	SE OUTCOMES	DOMAIN	LEVEI	_
CO1	<i>Explain</i> the various compounds of halogens and carbon.	Cognitive	Understan ng	ndi
CO2	<i>Describe</i> the properties structure of peracids.	Cognitive	Remembe	er
CO3	<i>Recognize</i> the general characteristics and properties of transition elements.	Cognitive Affective	Apply Receiving	5
CO4	<i>Identify</i> the general characteristics and properties of Lanthanides and Actinides.	Cognitive Affective	Remembe Respondi	er ng
CO5	<i>Apply</i> and <i>Identify</i> the various properties and bonding of organo metallic compounds.	Cognitive	Apply Remember	er
 UNIT I Halogens, Carbon and Noble gas compounds Halogens -General trends in the properties of halogens – deviation of fluorine from other elements of the group. Preparation of fluorine – properties of fluorine – hydrogen fluoride – oxides of halogens – preparation properties and uses of hydrogen halides, oxy acids of halogens – freons. Interhalogen Compounds: XY, XY₃, XY₅ and XY₇ types and their structure. Pseudohalogens and pseudohalides definition with exmples. Inorganic Carbon Compounds: Types of carbides - Covalent, ionic and interstitial carbides with suitable examples – oxides of carbon – oxy acids of carbon – carbonates – fullerenes. Noble gas compounds: preparation and properties of xenon fluorides and oxyfluoride and kryptonfluoride. 				10+3
UNIT IIPeracids and persalts: preparation, properties and structure of permonosulphuric acid, perdisulphuric acid and potassium perdisulphate. Preparation and properties of permonocarbonic acid, perdicarbonic acid and perdicarbonic acid and 			cture of isulphate. acid and	6+3
UNIT III Unit III: Transition Elements - Group Study Transition elements-position in the periodic table General group trends wi special reference to electronic configuration, variable valency, colour, magnet and catalytic properties, ability to form complexes and stability of varior oxidation states (Latimer diagrams) for Mn, Fe and Cu. Chemistry of titanium			ends with magnetic f various tanium	9+3

	dioxide, titanium t ammonium molyb	etrachloride, vana date, molybdenun	dium penta oxide n blue, tungsten o	-ammonium var xide, tungsten bi	nadate, ronze.	
	zirconium halide.	j			,	
UNIT IV	Unit IV: Lanthan	ides and Actinide	es			
	Position of lan	thanides actinide	es in the perio	odic table –	Electronic	
	configurations, oxidation states, colour, magnetic properties, lanthanide					
	contraction – actinide contraction.					
	Occurrence and	general methods of	of extraction of la	anthanides by re	educing the	
	trihalides, ion exc	change and valen	ce exchange met	hods. Isolation	of thorium	10+3
	from monazite –	Preparation proper	rties and uses of o	oxides, oxy acid	ls, hydrides	
	and halides of ceri	um and lanthanun	n.			
	Organometallic c	ompounds of lanth	nanoides – optical	properties -mag	gnetic	
	properties of lanth	anides - Applicati	ons of lanthanides	s and actinides.		
Unit V	Organo Metallic o	compounds				
	Definition and Clas	sification with app	propriate example	s based on natur	re of metal-	
	Zeiss salt and ferro	c, s, p and mutte ocene. EAN rule as	s applied to carbo	nvls. Preparation	n. structure.	10+3
	bonding and properties of mononuclear and polynuclear carbonyls of 3d metals.					20.0
	p-acceptor behaviour of carbon monoxide. Synergic effects (VB approach)- (MO					
	diagram of CO can	be referred to for	synergic effect to	IR frequencies)).	
	LECTURE	TUTORIAL	PRACTICAL	TOTA	L HOURS	
Hours	45	15	-		60	

Books for Reference:

- 1. "Inorganic Chemistry", P.L.Soni
- 2. "Inorganic Chemistry", Puri and Sharma
- 3. "Advanced Inorganic Chemistry", R.D.Madan

Reference Books

- 1. "Basic Inorganic Chemistry", F.A. Cotton and Wilkinosn
- 2. "In-organic Chemistry", Shriver and Atkins
- 3. "Inorganic Chemistry", JamesE.Huheey
- 4. "Concise Inorganic Chemistry", J.D.Lee
- 5. "Fundamentals of Inorganic Chemistry", Gilreath

COURSE CODE	COURSE NAME	L	Τ	P	С
XCY304	Organic Chemistry II	3	1	0	4
C:P:A	3.2:0:0.8	L	Т	Ρ	Η
		3	1	0	4

COURSE OUTCOMES:

On the successful completion of the course, students will be able to SYLLABUS:

COUR	SE OUTCOMES	DOMAIN	LEVEL
CO1	<i>Explain</i> the principle of atomic structure and and its substitution reaction.		
CO2	<i>Describe</i> the phenol, ethers and aryl halides reacritons with Some naming reactions.		
CO3	<i>Identify</i> the compounds of amines and diazonium salts.	Cognitive Affective	Apply Receiving
CO4	<i>Recognise</i> the variousstructures of amino acids, peptides and proteins	Cognitive Affective	Understandi ng Responding
CO5	Describe the general properties of carbohydrates.	Cognitive	Remember
	 Aromatic Compounds Aromatic compounds: Aromatic hydrocarbons – a Huckel's rule – Simple applications. Aromatic substitution substitution with suitable examples – Mechanism of Nitration, Sulphonation and Friedel-Craft's reactions – n free radical substitution with suitable examples. Directive influence of substituents: Orientation – Effect of activating and deactivating groups – Rules of disubstitution 	romaticity and n: Electrophilic Halogenation, ucleophilic and of substituents – on and	9+3
UNIT I	I Phenols, Ethers and Aryl Halides (Phenol case) Preparation: Cumene hydroperoxide diazonium salts. Reactions: Electrophilic substitut halogenation and sulphonation. ReimerTiemann Reaction Koch Reaction, Houben–Hoesch Condensation, Schott Reaction. Ethers (aromatic): Cleavage of ethers with HI. Aryl Halides Preparation: (Chloro, bromo and iodo-benz phenol, Sandmeyer & Gattermann reactions. Reactions (C Aromatic nucleophilic substitution (replacement by –C effect of nitro substituent. Benzyne Mechanism: KNH	method, from ion: Nitration, n, Gattermann- en – Baumann ene case): from Chlorobenzene): DH group) and 2/NH ₃ (or	10+3

l l a	NaNH ₂ /NH ₃). Reactivity and Relative strength of C-Halogen bond in alkyl, allyl, benzyl, vinyl and aryl halides. preparation and uses of DDT.				
UNIT III U A a r H m a I I a t t a	Unit III Amines and Diazonium SaltsAmines (Aliphatic and Aromatic): (Upto 5 carbons) Preparation: fromalkyl halides, Gabriel's Phthalimide synthesis, Hofmann Bromamidereaction. Reactions: Hofmann vs. Saytzeff elimination, Carbylamine test,Hinsberg test, with HNO2. Electrophilic substitution (case aniline):nitration, bromination, sulphonation. Diazonium salts: Preparation: fromaromatic amines. Reactions: conversion to benzene, phenol, dyes.Derivatives of phthalic acid: preparation and properties of phthalicanhydride and phthalimide. Preparation of the following compounds andtheir uses -phenylacetic acid,mandelic acid, cinnamic acid,aspirin and methylsalicylate.				
UNIT IV A S I I - m C d a	Amino Acids, Peptides and ProteinsAmino Acids, Peptides and Proteins: Preparation of Amino Acids:Strecker synthesis using Gabriel's phthalimide synthesis. Zwitterion,Isoelectric point and Electrophoresis. Reactions of Amino acids: ester of-COOH group, acetylation of -NH2 group, complexation with Cu ²⁺ ions,ninhydrin test. Overview of Primary, Secondary, Tertiary andQuaternary Structure of proteins. Synthesis of simple peptides (uptodipeptides) by N-protection (t-butyloxycarbonyl and phthaloyl) & Cactivating groups and Merrifield solid-phasesynthesis.				
Unit VCarbohydrates Classification, and General Properties, Glucose and Fructose (open chain and cyclic structure), Determination of configuration of monosaccharides, absolute configuration of Glucose and Fructose, Mutarotation, ascending and descending in monosaccharides. Structure of disacharrides (sucrose, cellobiose, maltose, lactose) and polysacharrides (starch and cellulose) excluding their structure elucidation. Oils and fats: definition – determination and application – saponification value – iodine value – Reichert-Meissel value – acid value.					8+3
	LECTURE	TUTORIAL	PRACTICAL	TOTAL	HOURS
Hours	45	15	-	6	0

Text Books

- 1. "Organic Chemistry", P.L.Soni
- 2. "Advanced Organic Chemistry", B.S.Bahl and ArunBahl
- 3. "Organic Chemistry", R.T.Morrison and R.W.Boyd

Reference Books

- 1. "Organic Chemistry Volume I", I.L. Finar
- 2. "Organic Chemistry Volume II", I.L.Finar
- 3. "Reaction Mechanism of Organic Compounds" JerryMarch
- 4. "Organic Chemistry" J.Clayden

5.Kotz, J.C., Treichel, P.M. & Townsend, J.R. General Chemistry, Cengage Learning India Pvt. Ltd.: New Delhi(2009).

- 6. Mahan, B.H. University Chemistry, 3rd Ed. Narosa(1998).
- 7. Petrucci, R.H. General Chemistry, 5th Ed., Macmillan Publishing Co.: New York(1985).
- 8. Nelson, D. L. & Cox, M. M. Lehninger's Principles of Biochemistry 7thEd.,
- 9. W. H. Freeman. Berg, J.M., Tymoczko, J.L.& Stryer, L. Biochemistry, W.H. Freeman, 2002.

COURSE CODE CORSE NAME		XCY307	L	Т	Р	С
		SEMI MICRO INORGANIC QUALITATIVE ANALYSIS – PRACTICAL-III	0	0	4	2
			L	Т	Р	Н
	C:P:A	1.0: 0.8:0.2	0	0	4	4
COU	COURSE OUTCOMES		DOMAIN		LEVEL	
CO1	O1 Ability to <i>Identify</i> the ions in a given Inorganic mixture		Cognitive Psychomotor		Remember Perception	
CO2	<i>Analyse</i> the individual cations and anions present in a given mixture and <i>explain</i> the characteristic properties of cations.		Cognitive Psychomotor Affective		Understand Analyse Perception Receive	
CO3	Use the principle behind the analysis of ions.		Cognitive		Apply	
Prog	rammes to be	exercised	·			2

Semi-micro qualitative analysis using H_2S of mixtures - not more than four ionic species (two anions and two cations and excluding insoluble salts) out of the following:

 $\begin{array}{l} Cations: NH_{4}{}^{+}, Pb^{2+,} Ag^{+}, \ Bi^{3+,} Cu^{2+,} Cd^{2+,} Sn^{2+,} Fe^{3+}, Al^{3+}, Co^{2+}, Cr^{3+}, Ni^{2+}, Mn^{2+,} Zn^{2+}, Ba^{2+,} Sr^{2+,} Ca^{2+,} K^{+} \end{array}$

Anions : CO_3^{2-} , S^{2-} , SO^{2-} , $S_2O_3^{2-}$, NO_3^{-} , CH_3COO^{-} , Cl^{-} , B^{r-} , I^{-} , $NO3^{-}$, $SO4^{2-}$, $PO4^{3-}$, $BO3^{3-}$, $C2O4^{2-}$, F^{-} (Spot tests should be carried out wherever feasible)

		LECTURE	TUTORIAL	PRACTICAL	TOTAL	
		0		30	30	
TEXT	BOOK					
1.	1. Venkateswaran V. Veerasamy R. Kulandaivelu A.R., Basic principles of Practical Chemistry, 2 nd edition, New Delhi, Sultan Chand & sons(1997)					
2.	 FrankJ.WelcherandRichardB.Hahn,SemimicroQualitativeAnalysis,NewDelhi, Affiliated East-west Press Pvt. Ltd. (1969). 					

SEMESTER IV

COURSE CODE XCY401 C:P:A		COURSE NAME	L	Т	SS	Р	С
		PharmaceuticalChemistry 1 0.6:0.8:0.6 L		0	1	2 P	2
				Т	SS		Н
			1	0	1	2	4
COUI	RSE OUTCOMES		L	DON	IAIN	LEV	EL
CO1	<i>Explain</i> the basic concepts and aims of pharmaceutical chemistry			Cognitive Under ng		Unders ng	tandi
CO2	<i>Identify</i> the role of drugs and its preparation.			CognitiveApplAffectiveReceRespResp		Apply Receiv Respor	ing Iding
CO3	Describe the antibiotics role pharmaceuticals in our life.			Cognit	ive	-	
CO4	<i>Recognise</i> fermentation Aerobic and anaerobic fermentation in daily process.		Cognit Affect	nitive Underst ctive ng		tandi	
CO5	Describe the impo	ortant medicinal plant and its actions		Cognit	ive	Remen Unders ng	nber tandi

COURSE OUTCOMES:

On the successful completion of the course, students will be able to SYLLABUS:

UNIT I	Basic concepts of pharmaceutical chemistry Basic concepts and aims of pharmaceutical chemistry- Terms and Definitions - drug, pharmacophore, pharmacology, pharmacopoeia, chemotherapy – Biological activities and examples -bacteria, virus, and vaccine-	6
UNIT II	 Drugs Classification of drugs, Drug discovery, design and development; Basic Retrosynthetic approach. Synthesis of the representative drugs of the following classes: analgesics agents, antipyretic agents, antiinflammatory agents (Aspirin, paracetamol,lbuprofen Practical 1. Preparation of Aspirin and its analysis. 2. Preparation of magnesium bisilicate(Antacid). 3. Preparation of Acetanilide 	6
UNIT III	Pharmaceuticals Antibiotics (Chloramphenicol); antibacterial and antifungal agents (Sulphonamides; Sulphanethoxazol, Sulphacetamide, Trimethoprim); antiviral agents (Acyclovir), Central Nervous System agents (Phenobarbital, Diazepam),Cardiovascular (Glyceryl trinitrate), antilaprosy (Dapsone), HIV- AIDS related drugs (AZT- Zidovudine). Practical : Preparation of nitro benzene.	6
UNIT IV	Fermentation Aerobic and anaerobic fermentation. Production of (i) Ethyl alcohol and citric acid, (ii) Antibiotics; Penicillin, Cephalosporin, Chloromycetin and	6

	Streptomycin, (iii) Lysine, Glutamic acid, Vitamin B2, Vitamin B12 and	
	Vitamin C.	
	Practical : Separation of Amino Acids	
Unit V	Medicinal plants	
	Medicinal plants origin, function and uses-Tulasi, Neem, Kizhanelli, Alovera, Semparuthi, Nilavembu, Adadodai and Thoothvelai. Anticancer plants: harmine- taxol-colchicines. Practical : separation of plant pigments	6
		30

	LECTURE	SS	PRACTICAL	TOTAL HOURS
Hours	15	15	30	60

References

- 1. G.L. Patrick: Introduction to Medicinal Chemistry, Oxford University Press,UK.
- 2. Hakishan, V.K. Kapoor: Medicinal and Pharmaceutical Chemistry, VallabhPrakashan, Pitampura, NewDelhi.
- 3. William O. Foye, Thomas L., Lemke , David A. William: Principles of Medicinal Chemistry, B.I. Waverly Pvt. Ltd. NewDelhi.

COURSE CODE	COURSE NAME	L	Т	Р	С
XCY403	Physical Chemistry II	3	1	0	4
C:P:A	3.6:0:0.4	L	Т	Р	Η
		3	1	0	4

COURSE OUTCOMES:

On the successful completion of the course, students will be able to SYLLABUS:

CO1	<i>Explain</i> the principle thermodynamicsand its laws applications.	Cognitive	Understanding			
CO2	<i>Apply</i> the rate and its half life for the chemical reactions	Apply Receiving				
CO3	<i>Describe</i> the various concepts and laws of solutions.	Cognitive	Understanding			
CO4	<i>Identify</i> the various component system and its equilibrium.	Cognitive Affective	understanding			
CO5	<i>Describe</i> the basic concepts in electro chemistry and <i>application</i> of conductance and for finding the emf of thecell.	Apply Remember				
UNITI	9+3					
UNIT	 Chemical kinetics Rate of reactions – rate constant – order and molecularity reactions – firstorderand pseudo unimolecular (definition and examples) – derivation of rateconstant inversion of cane sugar. Second order reactions – definitie examples – derivation of rateconstant(same conc and different concentration) and half life period – applica saponification of ester. Third order reactions: definition and examples. M determination of order of reactions.Zero order reactions and examples – derivation of rate constant. Theory of rea – collision theory of bimolecular reactions – unimolecular – Lindemann's hypothesis – theory of absolute reactionra 	y of reactions for the on – centration tion to Methods of – definition ction rates rreactions ates	10+3			
Thermodynamics of ideal solutions: Ideal solutions and Raoult's law, deviations from Raoult's law – non-ideal solutions. Vapour pressure-composition and temperature, composition curves of ideal and non-ideal solutions. Distillation of solutions. Lever rule. Azeotropes. Partial miscibility of liquids: Critical solution temperature; effect of impurity on partial miscibility of liquids. Immiscibility of liquids- Principle of steam distillation. Nernst distribution law and its applications, solvent extraction.UNIT IVUnit IV: Ionic Equilibrium and Phase Equilibrium						8 +3
---	-----	---------	----------	-----------	--	-----------
UNIT IVUnit IV: Ionic Equilibrium and Phase EquilibriumIonic Equilibria: Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, Solubility and Solubility product-common ion effect. Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions. Phase Equilibrium Phases, components and degrees of freedom of a system, criteria of phase equilibrium. Gibbs Phase Rule and its thermodynamic derivation. Derivation of Clausius – Clapeyron equation and its importance in phase equilibria. Phase diagrams of one-component systems (water and sulphur) and two component systems involving eutectics, congruent and incongruent melting printe (head silver and p)						9+3
points (lead-silver only).Unit VUnit V: Electrochemistry and Conductance Reversible and irreversible cells. Concept of EMF of a cell. Measurement of EMF of a cell. Nernst equation and its importance. Types of electrodes. Standard electrode potential. Electrochemical series. Thermodynamics of a reversible cell, calculation of thermodynamic properties: ΔG , ΔH and ΔS from EMF data. Calculation of equilibrium constant from EMF data. Concentration cells with transference and without transference. Liquid junction potential and salt bridge. Potentiometric titrations Conductance Conductivity, equivalent and molar conductivity and their variation with dilution for weak and strong electrolytes. Kohlrausch law of independent migration of ions. Ionic mobility. Applications of weak electrolyte. Conductometric titrations (only					nce. cal ion n nd y. egree	9+3
TT		LECTURE	TUTORIAL	PRACTICAL	TO	TAL HOURS
Ho	urs	45	15	-		60

Text Books

- 1. "Principles of Physical Chemistry", B.R.Puri and L.R.Sharma
- 2. "Principles of Physical Chemistry", B.R.Puri, L.R.Sharma and M.S.Pathania

3. "Physical Chemistry", N.Kundu and SN.Jain

Reference Books

- 1. "Textbook of Physical Chemistry", S.Glasstone
- 2. "Physical Chemistry", G.M.Barrow
- 3. "Advanced Physical Chemistry", P.W.Atkins
- 4. "Chemical Kinetics", K.J.Laidler
- 5. Glasstone S., Lewis D., Elements of Physical Chemistry, London, Mac Millan & Co.Ltd
- 6. Barrow, G.M. Physical Chemistry Tata McGraw-Hill(2007).
- 7. Castellan, G.W. Physical Chemistry 4th Ed. Narosa(2004).
- 8. Kotz, J.C., Treichel, P.M. & Townsend, J.R. General Chemistry Cengage Learning India Pvt. Ltd., New Delhi(2009).
- 9. Mahan, B.H. University Chemistry 3rd Ed. Narosa(1998).
- 10. Petrucci, R.H. General Chemistry 5th Ed. Macmillan Publishing Co.: New York(1985).
- 11. Cotton, F.A. & Wilkinson, G. Basic Inorganic Chemistry, Wiley.
- 12. Shriver, D.F. & Atkins, P.W. Inorganic Chemistry, Oxford UniversityPress.
- 13. Wulfsberg, G. Inorganic Chemistry, Viva Books Pvt.Ltd.

COURSE CODE	COURSE NAME	L	Τ	P	С
XCY404	Inorganic Chemistry III	3	1	0	4
C:P:A	3.6:0:0.4	L	Т	P	H
		3	1	0	4

COURSE OUTCOMES:

On the successful completion of the course, students will be able to SYLLABUS:

COUR	SE OUTCOMES	DOMAIN	LEVEL			
CO1	<i>Indentify</i> the stability of complexes and its isomerism.	Cognitive	Understandi ng			
CO2	O2 Describe the various bonding and theroies of metal and ligands. Cognitive Affective Ung Rd					
CO3	<i>Apply</i> the concept of stability in metal carbonyls and understand the principle of complexometric titrations.	Cognitive Affective	Apply Receiving			
CO4	<i>Identify</i> the role of alkali, alkaline earth and transition metals in bio inorganic chemistry.	Cognitive Affective	understandi ng			
CO5	<i>Describe</i> the properties and applications of silicones and zeolites.	Cognitive	Apply Remember			
	 Unit I CO-ORDINATION CHEMISTRY Ligands, classification of ligands, IUPAC nomenclature of compounds, Co-ordination number, Sidgwick's electron of coordination compounds and the concept of effective (EAN). Isomerism – geometric isomerism in coordination number compounds, optical isomerism and conditions for optical optical isomerism in coordination number 4 and 6 compounds to complexes – definition of labile and inert conaffecting stability of complexes. 	of coordination ic interpretation atomic number er 4 and 6 l isomerism, ounds. mplexes – factor	-s 9+3			
UNIT IIUnit II Theories of metal – ligand bonding in complexes: Werner's coordination theory, limitations of Werner's theory. Valence bond theory (VBT) – formation of inner and outer orbital complexes of Cr, Fe, Co, Ni and Cu (coordination numbers 4 and 6). – application of VBT to octahedral complexes, square planar and tetrahedral complexes, limitations of VBT. crystal field theory (CFT) – crystal field splitting in tetrahedral, square planar and octahedral complexes, strong and weak ligands.						

spo pro sta Td Lia co oc	spectrochemical series – high – spin and low – spin complexes, magnetic properties of octahedral and tetrahedral complexes, crystal field stabilization energy (CFSE) and its uses Comparison of CFSE for Oh and Td complexes, limitations of CFT - comparison of VBT and CFT. Ligand field theory – application of LFT to octahedral and tetrahedral complexes – metal ligand π – bonding. Tetragonal distortion of octahedral geometry. Jahn-Teller distortion, Square planarcoordination.						
UNIT III Un co Ma am Ch Ap an Se ida po Cc est EI Cl	compoundsMetal carbonyls – classification with suitable examples – metal carbonylsand EAN rule – stability of metal carbonyls – applications.Chelates – application of chelates.Applications of co- ordination compounds in qualitative and quantitativeanalysis:Separation of silver and mercury ions, copper and cadmium ions,identification of aluminium, chromium, nickel, zinc, manganese andpotassium,Complexometric titrations – principle and applications – quantitativeestimation of nickel using DMG, aluminium using oxine – structure ofEDTA complexes.Cluster compounds: Boranes – carbaboranes – carbonyl clusters.						
UNITIV UT Es R Sy R el (¢ zi o:	nt IV: Bio – morg ssentiality (significa ole of alkaline ystems.Na/Kpump. Role of iron in biolo lucidation not req elementary study) S inc in biological sy f protein structures oisoning – cadmium	ance) of metal and and alkaline ea gical systems – str uired) – oxygen Structure of chloro stems. Role of Ca s and structural ro n and mercurypoiso	metal ions in biolo rth metal ions ucture of haemogle transportation by phyll – photosym ²⁺ in blood clottin ile (bones). Hydro oning.	ogical systems. in biological obin (structural haemoglobin thesis. Role of g, stabilization ogenase- Metal	9+3		
Unit V Ur Ty sil Pro sil Ap rul ho co Za ma	it VUnit V: Silicones (polysiloxanes) and Silicates Types of silicones – structure of silicones – versatile properties of silicones. Preparation and properties of dimethyl, methylphenyl and diphenyl siliconesanes.Applications of silicones – desired properties – sealants and adhesives – rubber – paints and coatings – health care – Automotive – aerospace – household – defoaming drycleaning electronics lubricants personalcare – construction.Zeolites – types of zeolites - uses like ion- exchangers water softeners, molecular sieves dehydrating agents, adsorbents and catalysts,						
L	LECTURE	TUTORIAL	PRACTICAL	TOTAL H	OURS		
Hours	45	15	-	60			

Text Books

- 1. "Inorganic Chemistry", P.L.Soni
- 2. "Advanced Inorganic Chemistry", R.D. Madan
- 3. "Inorganic Chemistry", Puri and Sharma

Reference Books

- 1. "Basic Inorganic Chemistry", F.A. Cotton and Wilkinosn
- 2. "A Textbook of quantitative Inorganic Analysis", Arthur. I. Vogel
- 3. "Inorganic Chemistry", JamesE.Huheey
- 4. "Concise Inorganic Chemistry", J.D.Lee
- 5. "Fundamentals of Inorganic Chemistry", Gilreath
- 6. "Engineering Chemistry", B.C.Jain and MonicaJain
- 7. "In-organic Chemistry", Shriver and Atkins

COU	RSE NAME Inorganic Quantitative Ana PracticalIV				L	Т	Р	С	
					0	0	4	2	
					v	v			
COU	RSE CODE	XCY406			L	Т	P	H	
C:P:A	P:A 1.0: 0.8:0.2				0	0	4	4	
COURSE OUTCOMES				DO	MAIN	LEV	VEL		
CO1	Ability to <i>Ide</i>	ntify the vario	us inorganic con	nplexes	Cog	nitive	Ren	nember	
					Psyc	chomotor	Perc	eption	
CO2	2 <i>Analyse</i> the quantity of individual metal present in a					nitive	Und	erstand	
	given mixture and explain the characteristic				Psyc	chomotor	Ana	nalyse	
	properties of	the complexes	•		Affe	ective	Perc	Perception	
							Reco	eive	
CO3	Use the princ	iple behind the	e gravimetric ana	lysis.	Cog	nitive	Арр	ly	
Expe	riments						·		
1.	Estimation of	Lead as leadch	nromate.						
2.	Estimation of	Barium as bari	iumchromate.						
3.	Estimation of	Nickel as Nick	cel - DMGcomple	ex.					
4.	Estimation of	Copper as cop	per (1)thiocyanat	e					
5.	Estimation of	Magnesium as	magnesiumoxin	ate					
0. 7	Estimation Ca	Icium as calcil	im oxalatemonor	iyarate					
/.	Estimation of	Iron as Iron (II	Dovide						
0.	Estimation of			IFCTU	PF	PRACTIC			
			-		NĽ	30	<u>- 10</u> 30	JAL	
ТЕХТ	BOOK			v			50		
1	Venkateswaran	V Veerasamy	R Kulandaivel	IAR Ra	sic n	rinciples of	Practical		
	Chemistry, 2^{nc}	¹ edition, New	Delhi, Sultan Ch	and & sor	1510 pm	97)	1 Iucticul		

SEMESTER V

COURSE	CODE	COURSE NAME	L	Т	P	SS	С
XCY501		CLINICAL CHEMISTRY	1	0	2	1	2
			L	T	P	SS	H
			1	0	2	1	4
COURSE course, st	COUTCOMES: udents will be al	On the successful completion of the ble to		DOMA	IN	LEV	/EL
CO1	<i>Identify</i> the metabolism.	mechanism of different types	of	Cognitive		Remem	lber
CO2	<i>Explain</i> the imused in clinical	portant concepts of various techniques chemistry.		Cognitive		Underst	tand
CO3	Analyse the var	rious molecular entities known as		Cognitive		Analyz	e
	vitamins and nu	utrition values.					
CO4	<i>Interpret</i> the m	ethods of testing of various organs of		Cognitive		Unders	tand
	body and the di	iagnostic roles of related enzymes.					
CO5	<i>Illustrate</i> the variable glucose and che	arious methods for cardiac profile, olesterol estimation.		Cognitive		Analyz	e
SYLLABU	JS:						
UNIT - II	METABOLISM					3+3	
Distribution macronutr metabolisi	on of fluids in the ients (principal m. Lipid metabo	ne body, ECF & ICF, water metabolis mineral elements) & trace element lism. Bile pigment metabolism	sm, o s. C	de hydration Carbohydrate	, mine metal	ral meta oolism,	bolism, Protein
UNIT - II	TECHNIQUE	S USED IN CLINICAL CHEMISTR	RY			3+3	
Photometri instrumen photometri application	ry- Definition, ts, parts of pl ry, fluorometry, c ns.	laws of photometry, absorbance, hotometer, types of photometry–co choice of appropriate filter, measureme	tra lorii nts o	nsmittance, netry, spect of solution, c	absorj trophot calculat	ption n tometry, tion of fo	naxima, flame ormula,
UNIT – I	II VITAMINS A	AND NUTRITION				2+3	
Classificat of fat solu coenzyme	tion of vitamins, ble vitamins. Ch functions of wat	Chemistry, properties, biological importa emistry, properties, biological importa ter soluble vitamins.	ortan nce,	ce and defic deficiency n	iency r nanifes	nanifest tations a	ations and
UNIT –IV	/ ORGAN FUN	CTION TESTS AND DIAGNOSTIC	CEN	ZYMES		5+3	
Organ function tests: Evaluation of organ function tests: Assessment and clinical manifestations of renal, pancreatic, gastric and intestinal functions. Clinical importance of bilirubin. Enzyme tests in determination of myocardial infarction. Enzymes of pancreatic origin and biliary tract.							
UNIT –V	APPLICATION	S OF CLINICAL CHEMISTRY				2+3	
Cardiac Pr heart dise advantage	Cardiac Profile - In brief Hypertension, Angina, Myocardial Infarction, Pattern of Cardiac Enzymes in heart diseases, Different methods of Glucose Estimation and Cholesterol Estimation, Principle advantage and disadvantage of different methods.						

PRACTICALS			30hrs					
Estimation of glucose using	Fehling's solution	1						
Estimation of cholesterol us	Estimation of cholesterol using ferric chloride							
Estimation of ferric ion by c	Estimation of ferric ion by colorimetric method							
Iodometric determination of	vitamin C							
Estimation of carbohydrate	n mixture by qual	itative method.						
TEXT BOOKS								
1. Lehninger Principles of	Biochemistry 4th	Ed By David L. Ne	elson and Michael M.Cox,WH					
Freeman and Company.								
2. Principles of Biochemis	ry (Hardcover) By	y Geoffrey Zubay.	Publisher: McGraw HillCollege.					
3. Harper's Biochemistry (Lange Medical Bo	oks) (Paperback) I	By Robert K. Murray, Daryl					
4. K. Granner, Peter A. Ma	yes and Victor W	. Rodwell. Publish	er: Appelton andLange.					
5. Bioenergetics By David	G. Nicholls and S	tuart J. Ferguson.	AcademicPress.					
6. Bioenergetics at a Gland	e: An Illustrated I	ntroduction (At a C	Glance) By D.A. Harris.Publisher:					
WileyBlackwell								
REFERENCE BOOKS		1.2						
1. Biochemistry By Lubert	Stryer. WH Freen	nan andCo.						
2. Principles of Biochemis	ry By Robert Hor	ton, Laurence A M	loran, Gray Scrimgeour, Marc Perry					
and David Rawn. Pearso	nEducation.							
3. Harper's Biochemistry By RK Murray, DK Granner, PA Mayes and VW Rodwell. Appeltonand								
Lange,Stanford.								
LECTURE TUTORIAI	, SELF-STUDY	PRACTICAL	TOTAL HOURS					
15	15 30 60							

COURSE	CODE	COURSE NAME]	L	Т	P	С
XCY502A	A	PHYTOCHEMISTRY	3	3	1	0	4
]	L	Т	P	H
				3	1	0	4
COURSE	OUTCOMES: (On the successful completion of the successfu	ie		DOMA	IN	LEVEL
<i>course, st</i>	udents will be abl		1		•,•		D 1
	<i>Identify</i> new components from	biologically important mole n natural origin.	ecular	Cog	gnitive		Remember
CO2	<i>Explain</i> various	steps in isolation and separation of	f	Cog	gnitive		Understand
CO3	Analyse the var	rious molecular entities in the	nlant	Cos	nitive		Analyze
	Analyse the va	arious spectral and solvent ever	plan	002			j
	methods.	anous spectral and solvent exit					
CO4	<i>Interpret</i> the mo	de of action of various drugs extra	cted	Cog	gnitive		Understand
	from herbals.						
CO5	<i>Illustrate</i> the struherbs to make att	acture- functional activities of vari tempt to cure challengeable diseas	ous e.	Cog	gnitive		Analyze
SALLYB	US:						
UNIT - I	NATURAL PRO	DUCTS					9+3
Natural p phytocher studies lik	roducts – impor nical screening- b e anti-inflammato	tance-phytochemicals- classificat ioassay- in vitro and in vivo studie ry anti-diabetic analgesic and be	ion- c es- ant	divers timicr	ity of obial ac ive	structu tivity-	res- preliminary pharmacological
UNIT-II	РНУТОСНЕ	MICAL ISOLATION TECHNI		S			9+3
Phytocher phyto con by hydrod	nical isolation tech stituents- use of cl listillation method	hniques- solvent extraction- qualitation nromatographic techniques- TLC, s.	ative c HPLC	chemie C and (cal exan GC- det	ninatio ection	n- detection of of volatile oils
UNIT – I	П РНҮТОСНЕМ	IICAL IMPORTANCE OF DR	UGS				7+3
Sources, pharmaco quercetin	chemical structur logical importance and kaempferol.	res (structure only), chemical te e - nicotine, caffeine, theophilline	est for e, theo	r iden obrom	ntification nine and	on, phy l cocai	ytochemical and ne- Flavonoids -
UNIT –IV	TERPINOIDS	STEROIDS AND ANTI-CANC	ER Pl	LANI	ГS		11+3
Sources, c	hemical structures	s (structure only), chemical test for	r ident	ificati	ion, - Te	erpinoi	ds menthol,
camphor,	citral, limonene	-carotenoids lycopene and be	eta car	rotene	-Steroi	ds	stigmosteroland
	ol – anti-cancer pla	ints – cytostatics- harmine, taxol a	nd col	chicin	les		0+2
Structural	elucidation of the	compounds by spectroscopic tech	nique	e liko	UV IP	MSN	$\frac{3+3}{\text{MR}\left(\frac{1}{14} + \frac{13}{13}\right)}$
for simple	organic compoun	ds.	inque	5 IIKC	υν, π,	, 1910, 1	
TEXT BO	OKS						
1. Kal	si, P.S., Spectrosc	opy of organic compounds, New a	ge pul	blishe	rs, New	Delhi,	2000.

- 2. Lindsey, K., Transgenic Plant Research, Harwood Acad. Pub.1997.
- **3.** D. L. Pavia, G. M. Lampmann, G. S. Kriz, Introduction to Spectroscopy, Thomson, 3rd edition, 2001.
- **4.** Silverstein and Webster, Spectrometric Identification of Organic Compounds, Sixth Edition, Wiley, 1998.

REFERENCE BOOKS

- 1. W C Evans, Pharmacognosy, 15th edition, 2002.
- 2. Gunnar Samuelsson ,A Textbook of Pharmacognosy, English edition, Swedish Pharmaceutical Press, Stockholm,1992.
- 3. Gupta, P.K., Cytogenetics, Rastogi and Company, Meerut. 1995.
- 4. Swanson, C.P.. Cytology and Cytogenetics. Macm illan India Ltd. New Delhi, 1972.
- 5. Gupta, P.K. Elements of Biotechnology, Rastogi, Meerut, 1972.

E Resources - MOOCs:

- 1. <u>http://freevideolectures.com/Course/3218/Advance-Analytical-Course</u>
- 2. http://freevideolectures.com/Course/2908/Green-Chemistry-An-Interdisciplinary-Approach-to-Sustainability#

LECTURE	TUTORIAL	PRACTICAL	TOTAL
			HOURS
45	15	0	60

COURSE	CODE COURSE NAM	ME	L T P C			С
XCY502E	FORENSIC S	CIENCE	3	1	0	4
			L	T	P	H
			3	1	0	4
COURSE	OUTCOMES: On the success	ful completion of t	he	DOM	AIN	LEVEL
course, sti	dents will be able to	• , ,	C			D 1
COI	<i>Identify</i> the methods of analyz petroleum products in crime so	cing trace amounts o cene evidence.)Î	Cognitive		Remember
CO2	<i>Explain</i> the method of	searching, collect	cting,	Cognitive	•	Understand
	preserving and analyzing arson	nevidence				
CO3	Analyse the various types of e synthesis and characterization	xplosives, including of representative	; the	Cognitive	•	Analyze
	explosives.	locating modeli				
CO4	<i>Interpret</i> the importance of ch	romatographic and	٩	Cognitive	•	Understand
	evidence.		C			
CO5	<i>Illustrate</i> the significance of n trace evidence and comparing	nicroscopy in visual it with control same	izing oles.	Cognitive	•	Analyze
SALLYB	J S:	1				L1
UNIT - I	PETROLEUM AND PETRO	LEUM PRODUCT	'S			9+3
Distillatio	and fractionation of petroleum	n. Commercial uses	of dif	ferent petro	leum frac	ctions.
Analysis o	f petroleum products. Analysis	of traces of petroleu	ım pro	oducts in fo	rensic ex	hibits.
Compariso	n of petroleum products. Adult	eration of petroleun	n prod	ucts.		
UNIT - II	CASES INVOLVING ARSO	N				9+3
Chemistry	of fire. Conditions for fire. Fire	e scene patterns. Loc	cation	of point of	ignition.	Recognition of
type of fire	e. Searching the fire scene. Coll	ection and preserval	tion of	f arson evid	lence. An	alysis of fire
evaluation	of clue materials. Information	from smoke staining	rning.	Scientific	investiga	tion and
	I FXPLOSIVES	ITOIII SHIOKE Stallille	5 •			7+3
Classified	ion of evaluations have evaluate	vac and high avenlagi		[omomodo	annlaain	Militany
explosives	Blasting agents Synthesis and	characteristics of T	NUCS. I	PETN and I	PDX Explosive	plosion process
Blast way	s Bomb scene management S	earching the scene of	of expl	osion Mec	thanism c	of explosion Post
blast resid	ie collection and analysis. Blas	t injuries. Detection	of hic	lden explos	sives.	r explosion. I ost
UNIT –IV	INSTRUMENTATION	<u>.</u>		I		15+3
Sample p	reparation for chromatograph	ic and spectroscop	oic ev	vidence. C	hromatog	graphic methods.
Fundamer	tal principles and forensic appli	cations of thin layer	r chro	matography	y, gas chr	omatography and
liquid chr	omatography. Spectroscopic m	ethods. Fundament	al pri	nciples and	d forensi	c applications of
Ultraviole	-visible spectroscopy, infrar	ed spectroscopy,	atomi	c absorpti	on spect	troscopy, atomic
emission s	pectroscopy and mass spectros	copy. X-ray spectro	ometry	Colorime	tric analy	ysis and Lambert-
Beer law.	Electrophoresis –fundamental p	rinciples and forens	ic app	incations. N	neutron a	cuvationanalysis
	MICROSCOPV	incations.				5+3
						JTJ

Fundamental principles. Different types of microscopes. Electron microscope. Comparison Microscope. Forensic applications of microscopy.

TEXT BOOKS

- 1. D.A. Skoog, D.M. West and F.J. Holler, Fundamentals of Analytical Chemistry, 6thEdition, Saunders College Publishing, Fort Worth (1992).
- 2. W. Kemp, Organic Spectroscopy, 3rd Edition, Macmillan, Hampshire(1991).
- 3. J.D. DeHaan, Kirk's Fire Investigation, 3rd Edition, Prentice Hall, New Jersey(1991).
- 4. W.J. Tilstone, M.L. Hastrup and C. Hald, Fisher's, Techniques of Crime Scene Investigation, CRC Press, Boca Raton(2013).
- 5. S. Ballou, M. Houck, J.A. Siegel, C.A. Crouse, J.J. Lentini and S. Palenik in Forensic Science, D.H. Ubelaker (Ed.), Wiley-Blackwell, Chichester (2013)

REFERENCE BOOKS

- 1. J.W.Robinson, UndergraduateInstrumentalAnalysis, 5thEdition, MarcelDekker, Inc., NewYork (1995)
- 2. A.A. Moenssens, J. Starrs, C.E. Henderson and F.E. Inbau, Scientific Evidence in Civil and Criminal Cases, 4th Edition, The Foundation Press, Inc., New York(1995).
- 3. R. Saferstein, Criminalistics, 8th Edition, Prentice Hall, New Jersey(2004).

E Resources - MOOCs:

- 1. https://www.mooc-list.com/course/introduction-forensic-science-futurelearn
- 2. https://www.mooc-list.com/course/forensic-engineering-learning-failures-edx
- 3. https://www.class-central.com/tag/forensic%20science

LECTURE	TUTORIAL	PRACTICAL	TOTAL
			HOURS
45	15	0	60

COURSE	COURSE CODE COURSE NAME			L	Т	P	С	
XCY503A		ANALYTICAL METHODS IN CHEMIS	STRY	3	1	0	4	
					Т	Р	Η	
				3	1	0	4	
COURSE OUTCOMES: On the successful completion of the course, students will be able to			DOM	AIN		LEV	EL	
CO1	<i>Identify</i> the analysis and precision in	concepts of qualitative and quantitative also to find out the errors, accuracy and data analysis.	Cognitive	•	R	ememb	er	
CO2	CO2 <i>Explain</i> the principles and methods of analyzing chemical compounds with the help of various spectroscopies.				U	Understand		
CO3	Analyse the analysis inc.	various types of thermal methods of luding TGA, DTA, DSC etc.	Cognitive	•	A	nalyze		
CO4	<i>Interpret</i> the techniques i chemical co	e importance of electroanalytical n analysis of different parameters of mpounds and solutions	Cognitive	•	U	ndersta	nd	
CO5 <i>Illustrate</i> the significance of separation techniques in visualizing trace elements and comparing it with control samples.			Cognitive	•	A	nalyze		
SYLLYB	US:							
UNIT - I	QUALITAT	IVE AND QUANTITATIVE ASPECTS OF	ANALYS	IS		5+3		
Sampling,	evaluation of	analytical data, errors, accuracy and precision	, methods	of the	r expi	ession,	normal	
law of dis	tribution if in	determinate errors, statistical test of data; F	, Q and t	test, re	ejectio	n of da	ata, and	

confidence intervals.

UNIT-II OPTICAL METHODS OFANALYSIS

15 + 3

Origin of spectra, interaction of radiation with matter, fundamental laws of spectroscopy and selection rules, validity of Beer-Lambert's law.

UV-Visible Spectrometry: Basic principles of instrumentation (choice of source, monochromator and detector) for single and double beam instrument;

Infrared Spectrometry: Basic principles of instrumentation (choice of source, monochromator & detector) for single and double beam instrument; sampling techniques. Structural illustration through interpretation of data, Effect and importance of isotope substitution.

Flame Atomic Absorption and Emission Spectrometry: Basic principles of instrumentation (choice of source, monochromator, detector, choice of flame and Burner designs. Techniques of atomization and sample introduction; Method of background correction, sources of chemical interferences and their method of removal. Techniques for the quantitative estimation of trace level of metal ions from water samples. 5+3

UNIT – III THERMAL METHODS OF ANALYSIS

Theory of thermogravimetry (TG), basic principle of instrumentation. Principles, instrumentation and applications of TGA, DTA, DSC. Techniques for quantitative estimation of Ca and Mg from their mixture.

	5.3
UNIT -IV ELECTROANALYTICAL METHODS	5+3
Classification of electroanalytical methods, basic principle of pH metric, potentio	metric and conductometric
titrations. Techniques used for the determination of equivalence points. Techniqu	es used for the
determination of pK _a values.	
UNIT –V SEPARATION TECHNIQUES	15+3
Solvent extraction: Classification, principle and efficiency of the technique. Mech	nanism of extraction:
extraction by solvation and chelation. Technique of extraction: batch, continuous a	and counter current
extractions. Qualitative and quantitative aspects of solvent extraction: extraction	of metal ions from aqueous
solution, extraction of organic species from the aqueous and nonaqueous media.	
Chromatography: Classification, principle and efficiency of the technique. Mecha	anism of separation:
adsorption, partition & ion exchange. Paper, column, Thin layer chromatography	and HPLC
TEXT BOOKS	
1. Jeffery, G.H., Bassett, J., Mendham, J. & Denney, R.C. Vogel's Textbook of Q	QuantitativeChemical
Analysis, John Wiley & Sons, 1989.	
2. Willard, H.H., Merritt, L.L., Dean, J. & Settoe, F.A. Instrumental Methods of	Analysis, 7th Ed.
Wadsworth Publishing Company Ltd., Belmont, California, USA, 1988.	
3. Christian, G.D; Analytical Chemistry, 6th Ed. John Wiley & Sons, New York,	2004.
4. Harris, D. C. <i>Exploring Chemical Analysis</i> , Ed. New York, W.H. Freeman, 20	001.
REFERENCE BOOKS	
1. Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age, Internation	nal Publisher,2009.
2. Skoog, D.A. Holler F.J. & Nieman, T.A. Principles of Instrumental Analysis,	Cengage Learning India
Ed.	
3. Mikes, O. Laboratory Hand Book of Chromatographic & Allied Methods, Ell	les Harwood Serieson
Analytical Chemistry, John Wiley & Sons, 1979.	

E Resources - MOOCs:

1. <u>https://www.mooc-list.com/course/basic-analytical-chemistry-edx</u>

2. https://www.mooc-list.com/course/analytical-chemistry-instrumental-analysis-coursera

3. https://www.mooc-list.com/course/analytical-chemistry-saylororg

COURSE	OURSE CODECOURSE NAMELTP				Р	С		
XCY5031	3B AGRICULTURAL CHEMISTRY 3 1			1	0	4		
			L	L T		L T		Η
			3	1	0	4		
COURSE	OUTCOM	ES: On the successful completion of the	DOM	AIN		EVEL		
course, st	udents will b	e able to						
CO1	<i>Identify</i> the earth's crus	e chemical composition and soils of the t.	Cognitive	•	Reme	mber		
CO2	<i>Explain</i> the	e concept of soil fertility, soil productivity	Cognitive	•	Under	stand		
	and applicat	tion of various types of fertilizers						
CO3	Analyse the plants.	e various types of radioisotopes in soil and	Cognitive)	Analy	ze		
CO4	<i>Interpret</i> th techniques	e importance of remote sensing and GIS in agriculture.	Cognitive	•	Under	stand		
CO5	<i>Illustrate</i> the nutrients, pl interpretation	ne significance of Analysis of soil extracts, ants extracts and irrigation waters and on of results	Cognitive	•	Analy	ze		
SALLYB	US:							
UNIT - I	SOIL CHEN	AISTRY			7+	-3		
Chemical	(elemental) c	omposition of the earth's crust and soils. Elem	ents of equi	librium t	hermody	vnamics		
fractionati humus for The soil p	equilibria, electronic on of soil org mation, humu olysaccharide	ctrochemistry and chemical kinetics. Soil orga anic matter and different fractions, genesis and is decomposition, separation of humus from so s	nic matter – d nature of s bil particles,	classific oil orgar clay-org	cation, nic matte ganic inte	r and cractions.		
UNIT - I	SOIL FER	FILITY AND FERTILIZER USE			8+	.3		
Soilfertilityandsoilproductivity;nutrientsources–fertilizersandmanures;essentialplantnutrients- functions and deficiency symptoms. Law of soil fertility soil and fertilizer nitrogen – sources, forms, immobilization and mineralization, nitrification, denitrification; biological nitrogen fixation; nitrogenous fertilizers and their fate in soils; management of nitrogenous fertilizers.								
UNIT – I	II RADIOIS	OTOPES IN SOIL AND PLANT STUDI	ES		7+	.3		
Principlesanduseofradiationmonitoringinstruments-proportional,GeigerMullercounter,solidand liquidscintillationcounters;neutronmoisturemeter.Isotopicdilutiontechniquesusedinsoilandplant research; use of stable isotopes; application of isotopes in studies on organic matter, nutrient transformations, ion transport, rooting pattern and fertilizer use efficiency; carbondating								
UNIT –IV TECHNIQUES FOR SOIL, WATER AND CROP STUDIES 8+3								
Introduction and history of remote sensing; sources, propagation of radiations in atmosphere; interactions with matter. Sensor systems - camera, microwave radiometers and scanners; fundamentals of aerial photographs and image processing and interpretations. Application of remote sensing techniques - land use soil surveys, crop stress and yield forecasting, prioritization in watershed and drought management, land identification and management.								
					1 1	10		
Preparationof solutions for standard curves, analytical and qualitative reagents, indicators and standard solutions for acid-base, oxidation-reduction titration; soil, water and plant sampling techniques their								

processing and handling. Nutrient potentials and potential buffering capacities of soils. Determination of lime and gypsum requirement of soil

TEXT BOOKS

- 1. Agricultural Chemistry V.VPublications.
- 2. Soil anlaysis.Beckmann
- 3. Bear RE. 1964. Chemistry of the Soil. Oxford and IBH.
- 4. Bolt GH & Bruggenwert MGM. 1978. Soil Chemistry. Elsevier.
- Comer CL. 1955. Radioisotopes in Biology and Agriculture: Principles and Practice.Tata McGrawHill. Elangovan K. 2006. GIS Fundamentals, Applications and Implementations. New India Publ. Agency. Lillesand TM & Kiefer RW. 1994. Remote Sensing and Image Interpretation. 3rd Ed.Wiley
- 6. Hesse P. 1971. Textbook of Soil Chemical Analysis. William Clowes & Sons.
- 7. Jackson, M.L. 1967. Soil Chemical Analysis. Prentice Hall ofIndia.
- 8. Singh D, Chhonkar PK & Pandey RN. 1999. Soil Plant Water Analysis A Methods Manual. IARI, NewDelhi.

REFERENCE BOOKS

- 1. Greenland DJ & Hayes MHB. 1981. Chemistry of Soil Processes. John Wiley & Sons
- 2. Glasstone S. 1967. Source Book on Atomic Energy. East WestPress.
- 3. Michael FL & Annunziata. 2003. Handbook of Radioactivity Analysis. AcademicPress.
- 4. Kenneth Helrich 1990. Official Methods of Analysis. Association of Official AnalyticalChemists.
- 5. Page, A.L., Miller RH & Keeney DR. 1982. Methods of Soil Analysis. Part II.SSSA, Madison.
- 6. Piper CS. Soil and Plant Analysis. HansPubl.

E Resources - MOOCs:

1.http://nptel.ac.in/courses/126104002/

LECTURE	TUTORIAL	PRACTICAL	TOTAL HOURS
45	15	0	60

COURSE	URSE CODE COURSE NAME					L	Т	P		С		
XCY504A	CY504A COMPUTER APPLICATIONS IN CHEMISTRY			MISTRY	3	1	0		4			
								L	Т	Р		Η
								3	1	0		4
COURSE	OUTCOM	IES: On th	he succes	sful con	npletio	n of the	DOM	IAIN		LE	VE	L
course, sti	idents will i	be able to		0			<u> </u>			<u> </u>		
C01	<i>Identify</i> the operations	ne compones.	ents and f	tormats (of com	puter	Cognitiv	e		Remer	nbe	r
CO2	<i>Explain</i> the language.	ne element	s, operato	ors, prog	rammi	ng of basic	Cognitiv	e		Unders	stan	d
CO3	Analyse th roots of eq	ne various uations and	types of N 1 simultan	Numerica neous equ	al meth uation.	ods for	Cognitiv	e		Analyz	ze	
CO4	<i>Interpret</i> t techniques	the important the important the second second second second second second second second second second second se	ance of re ture.	emote se	nsing a	and GIS	Cognitiv	e		Unders	stan	d
CO5	<i>Illustrate</i> data handl	the signific	cance of r	molecula	ar mode	eling and	Cognitiv	e		Analyz	ze	
SALLYB	US:	U										
UNIT - I	INTRODU	CTION TO	O COMP	UTERS	APPL	ICATIONS	5			7+.	3	
Constants, inbuilt fund	variables, b ctions.	its, bytes, b	oinary and	ASCII	formats	s, arithmetic	expression	is, hier	arch	y of ope	erati	ions,
UNIT - II	ELEMEN	TS OF TH	E BASIC	C LANG	UAGE	1				7+.	3	
Elements of and graphic Matrix add	of the BASIC cs. Compile lition and m	C language d versus in ultiplication	. BASIC I terpreted	keywords language cal analy	s and control s	ommands. I ugging. Sin	Logical and aple program	relativ ns usii	ve op ng th	erators. ese con	Str	ings ts.
UNIT – II	I ROOTS (OF EQUA	TIONS A	AND SIN	MULT	ANEOUS E	QUATIO	NS		7+.	3	
Numerical	methods for	r roots of e	quations:	Quadrati	ic form	ula, iterativ	e method, N	Jewtor	n-Raj	ohson n	neth	od,
Binary bise Matrix ma	ection and R	Regula-Fals	i. ultiplicati	on Gaus	ss-Sied	al method						
UNIT –IV	DIFFERE	ENTIAL A	ND INTE	EGRAL	CALC					12-	+3	
Numerical	differentiati	ion, Numer	rical integ	ration (T	rapezo	idal and Sir	npson's rule	e), pro	babil	ity		
distribution	ns and mean	values.										
UNIT –V	CONCEPT	FUAL BAC	CKGROU	UND OF	MOL	ECULAR 1	MODELLI	NG		12-	+3	
Handling of experimental data. Potential energy surfaces. Elementary ideas of molecular mechanics and practical MO methods												
TEXT BO	OKS	•										
 Harris, D. C. <i>Quantitative Chemical Analysis</i>. 6th Ed., Freeman (2007) Chapters3-5. Levie, R. de, <i>How to use Excel in analytical chemistry and in general scientific data analysis</i>, Cambridge Univ. Press (2001) 487pages. Noggle, J. H. <i>Physical chemistry on a Microcomputer</i>. Little Brown & Co.(1985). Venit, S.M. <i>Programming in BASIC: Problem solving with structure and style</i>. Jaico Publishing House: 												
Delhi(1996).												

LECTURE	TUTORIAL	PRACTICAL	TOTAL HOURS
45	15	0	60

COURSE	CODE	CODECOURSE NAMELT				С		
XCY504E	8	PROGRAMMING IN C	3	1	0	4		
			L	Т	Р	H		
			3	1	0	4		
COURSE	OUTCOM	IES: On the successful completion of the course,	DON	IAIN	LE	VEL		
students w	vill be able	to						
CO1	<i>Identify</i> s	imple applications in C using basic constructs	Cogn	itive	Reme	ember		
CO2	<i>Explain</i> the strings	he design and implement applications using arrays and	Cogn	itive	Unde	rstand		
CO3	Analyse the using function	he development and implementation applications in C etions and pointers	Cogn	itive	Analy	yze		
CO4	<i>Interpret</i> in C.	the importance of structures in developing applications	Cogn	itive	Unde	rstand		
CO5	<i>Illustrate</i> random ad	the designing of applications using sequential and ccess file processing.	Cogn	itive	Analy	yze		
SALLYB	US:							
UNIT - I	BASICS O	F C PROGRAMMING			9+3			
Introductio	on to progra	mming paradigms -Structure of C program -C programn	ning: D	ata Ty	bes - S	Storage		
classes-Co	nstants–Enu	imeration Constants-Keywords–Operators: Precedence and	d Asso	ciativity	/-Expre	essions		
statements	– Pre-proce	ns, Assignment statements–Decision making statements-S	which s	tatemer	n-root	Jing		
UNIT - II	ARRAYS	AND STRINGS			9+3			
Introductio	on to Arrays	: Declaration, Initialization – One dimensional array-Exan	nple Pr	ogram:	Compi	uting		
Mean, Me	dian and N	Mode-Two dimensional arrays – Example Program: Ma	atrix O	peration	ns (Àd	ldition,		
Scaling, D	eterminant	and Transpose) - String operations: length, compare, con	ncatena	ite, cop	y – Se	lection		
sort, linear	and binary	Search.			013			
			.1.	<u> </u>	9+3	•		
functions.	on to function math function	ons: Function prototype, function definition, function call, I cons) – Recursion – Example Program: Computation of Sing	Built-in e series	Scient	ns (str ific	ıng		
calculator	using built-	in functions, Binary Search using recursive functions – Poi	nters –	Pointer	operat	ors –		
Pointer ari	thmetic – A	rrays and pointers –Array of pointers –Example Program:	Sorting	of nam	es –	_		
Parameter	passing: Pa	ss by value, Pass by reference –Example Program: Swapping	ng of tv	vo num	bers ar	ıd		
UNIT_IV	changing the value of a variable using pass by reference. LINIT_IV STRUCTURES							
Structure -	OTHER - IN STRUCTURES _ Pointer and Structures _ Array of structures _ Example Programusing							
structures and pointers –Self referential structures –Dynamic memory allocation-Singly linkedlist.								
UNIT –V FILE PROCESSING 12+3								
Files –Types of file processing: Sequential access, Random access –Sequential access file –Example Program: Finding average of numbers stored in sequential access file -Random access file –Example Program: Transaction processing using random access files –Command line arguments.								
TEXT BO	TEXT BOOKS							
1. Reema	I hareja, —I	Programming in CI, Oxford University Press, Second Edition	on, 201	6.				

2. Kernighan, B.W and Ritchie, D.M, —The C Programming languagel, Second Edition, Pearson Education, 2006

REFERENCE BOOKS

- 1. PaulDeitelandHarveyDeitel,—CHowtoPrograml,Seventhedition, PearsonPublication
- 2. Juneja, B. LandAnitaSeth, -- ProgramminginCl, CENGAGELearningIndiapvt.Ltd., 2011
- 3. PradipDey, ManasGhosh, —FundamentalsofComputingandProgramminginCl, FirstEdition, Oxford University Press, 2009.
- 4. AnitaGoelandAjayMittal,—ComputerFundamentalsandProgramminginCl,DorlingKindersley (India) Pvt. Ltd., Pearson Education in South Asia,2011.
- 5. Byron S. Gottfried, "Schaum's Outline of Theory and Problems of Programming with C",McGraw-Hill Education,1996

LECTURE	TUTORIAL	PRACTICAL	TOTAL
			HOURS
45	15	0	60

COURSE CODE	COURSE NAME	L	Т	Р	С
XCY505	ORGANIC QUALITATIVE ANALYSIS PRACTICALVA	0	0	4	2
		L	Т	Р	H
		0	0	4	4

SALLYBUS:

CO1	<i>Identify</i> the monofunctional groups in various types of organic compound.	Cognitive Psychomotor	Rem Perce	ember eption			
CO2	<i>Estimate</i> the extra elements in a combination of of two or more organic compounds.	Cognitive Psychomotor	Unde	erstandSet			
CO3	<i>Estimate</i> the R _f value by separating the mixtures of organic compounds by chromatography and effect of different parameters on amino acids and carbohydrates.	Cognitive Psychomotor Affective	Appl Set Rece	y iving			
PRAC	TICALS	(60 hrs				
 Systematic Qualitative Organic Analysis of Organic Compounds possessing monofunctional groups (- COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) and preparation of onederivative. Detection of extra elements (N, S, Cl, Br, I) in organic compounds (containing upto two extraelements) 							

2. Detection of extra elements (N, S, Cl, Br, I) in organic compounds (containing up to two extra element

Reference Books:

- 1. Svehla, G. Vogel's Qualitative Inorganic Analysis, Pearson Education, 2012.
- 2. Mendham, J. Vogel's Quantitative Chemical Analysis, Pearson, 2009.
- 3. Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., *Textbook of Practical Organic Chemistry*, Prentice-Hall, 5th edition,1996.
- 4. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry Orient-Longman, 1960.

COURSE CODE	COURSE NAME	L	Т	P	С
XCY506	PHYSICAL CHEMISTRY PRACTICALVB	0	0	4	2
		L	Т	P	H
		0	0	4	4

CO1		Cognitive Psychomotor	Remember Perception
CO2	<i>Estimate</i> the viscosity of liquid and its variation with respect to concentration of a solute.	Cognitive Psychomotor	UnderstandSet
CO3	<i>Estimate</i> the kinetics of different reactions using Initial rate method and Integrated rate method.	Cognitive Psychomotor Affective	Apply Set Receiving

SALLYBUS:

PRACTICALS	60 hrs
1. Electrochemistry practicals-Estimation of ferrous ion by potentiometric titration.	
2. Study the kinetics of the followingreactions.	
a) Initial rate method: Iodide-persulphatereaction	
b) Integrated ratemethod:	
(i) Acid hydrolysis of methyl acetate with hydrochloricacid.	
(ii) Saponification of ethylacetate.	
3. Compare the strengths of HCl and H2SO4 by studying kinetics of hydrolysis of methy	lacetate
Reference Books:	
5. Svehla, G. Vogel's Qualitative Inorganic Analysis, Pearson Education, 2012.	
6. Mendham, J. Vogel's Quantitative Chemical Analysis, Pearson, 2009.	
7. Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., Textbook	of Practical
Organic Chemistry, Prentice-Hall, 5th edition, 1996.	
8. Mann, F.G. & Saunders, B.C. <i>Practical Organic Chemistry</i> Orient-Longman, 1960.	

				SEMESTE	R VI		L	Т	SS	Р	С			
COUF	RSE CO	DE	XCY60	1			1	0	1	2	2			
COUF	RSE NA	ME	RENEV	VABLE ENERGY	7		L	Т	SS	Р	Η			
C: P:	A		1.4:0:0.	6			1	0	1	2	4			
COU	RSE OU	JTCON	1ES: : On	the successful co	mpletion of	Level			l					
the co	ourse, stu	udents v	vill be ab	le to		Domain								
CO1Describethe reserves of renewable energy and demand of energy needs.methodologies / technologies for effective utilization of renewable energy sources.CognitiveR					Re	emerr	nber							
CO2	<i>Explai</i> and its	i n the m applica	ethodolog tions.	gy to harness solar	energy	Cogniti ve Affectiv e					tan ly ⁄e			
CO3	Exami	i ne the p	ootential o	of wind energy and	its techniques.	C A	ogniti ffectiv	ve /e	Ur	nderst d eceiv	tan /e			
CO4	Recog	Inize the	e significa	nce of bio energy	generation .	Cognitive Apply Affective Respon			/ nd					
CO5	Interp energy	ret the e	effective to ces.	echnology of variou	us renewable	Cognitive				Cognitive Underst				and
UNIT	UNIT I INTRODUCTION TO ENERGY 3+6+3						3							
VVorid Utilisa Achie Applic	tenergy ation – R vements cations –	Use – I enewat ; / · Econol	Reserves ble Energy mics of re	of Energy Resourd Scenario in Tamil newable energy sy	ces – Environme I nadu, India anc /stems.	arou	Aspect Ind the	s of I e Wo	=nerg rld – F	y Poten	tials –			
UNIT II	S S	OLAR	ENERGY	Y					Í	3+6+3	3			
Solar	Radiatio	n – Mea	asuremen	ts of Solar Radiatio	on – Flat Plate ar	nd Co	ncentr	ating	Colle	ectors	_			
Solar	direct T	hermal A	Applicatio	ons – Solar thermal	Power Generati	on –	Funda	ment	als of	Sola	ſ			
Photo	Voltaic	Conver	$\frac{\text{sion} - \text{So}}{\text{NEDCX}}$	lar Cells – Solar P	V Power Generat	tion –	- Solar	PV.	Appli	cation	is.			
UNII	Dete or	IND E	NEKGY	ion Trues of Wi	d Engager Crister		Daufau			5+0+.	5			
Select	tion – De	etails of	Wind Tu	rbine Generator – S	Safety and Envir	onme	ental A	spec	ts.	lle				
UNIT	IV - B	[O - EN]	ERGY							3+6+3	3			
Bioma – Bio	ass direc diesel –	t combu Cogene	stion – B ration – I	iomass gasifiers – Biomass Applicatio	Biogas plants – I ons	Diges	sters –	Etha	nol pr	oduct	tion			
UNIT	TV - OT	HER R	RENEWA	BLE ENERGY S	OURCES					3+6+3	3			
Tidal Energ	energy - y – Hyd	- Wave rogen a	Energy – nd Storag	Open and Closed (e – Fuel Cell Syste	DTEC Cycles – S ms – Hybrid Sys	Small stems	Hydro.	o-Ge	otherr	nal				
LEC	TURE	TUTO	RIALS	SELF STUDY	PRACTIC	ALS			ТОТ	AL				
1	5		0	15	30				6)				
TEXT	Г ВООН	KS			·		<u> </u>							
1. Ra 2. Tw	i. G.D., idell, J.V	"Non C V. & W	onventior eir, A., "F	nal Energy Sources Renewable Energy	", Khanna Publis Sources", EFN S	shers, Spon	New Ltd., U	Delh JK,(2	i,(201 2006).	1).				
REFE	ERENC	ES												

- 1. Sukhatme. S.P., "Solar Energy", Tata McGraw Hill Publishing Company Ltd., NewDelhi, (1997).
- 2. Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", OxfordUniversity Press, U.K.,(1996).
- 3. Tiwari. G.N., Solar Energy "Fundamentals Design, Modelling & Applications", Narosa

Publishing House, New Delhi, (2002).

- 4. Freris. L.L., "Wind Energy Conversion Systems", Prentice Hall, UK,(1990).
- 5. Johnson Gary, L. "Wind Energy Systems", Prentice Hall, New York, (1985).
- 6. David M. Mousdale "Introduction to Biofuels", CRC Press, Taylor & Francis Group, USA, (2010).
- 7. Chetan Singh Solanki, Solar Photovoltaics, "Fundamentals, Technologies and Applications", PHI Learning Private Limited, New Delhi, (2009).

COU	RSE CO	ODE	XCY602A	L	Т	Ρ	SS	С	
COU	RSE NA	AME	INDUSTRIAL CHEMISTRY	3	1	0	0	4	
PREF	REQUI	SITE	NIL	L	Т	Ρ	SS	Н	
C:P:A	4		3.2:0:0.8	3 1 0			0	4	
COUI course	RSE OU e. studer	UTCOI nts will	MES: : On the successful completion of the be able to	DO	LEVEL				
C01	Descr indust	<i>ibe</i> the	utilization of the raw materials in chemical	Cogr	nitive		Remember		
CO2	<i>Expla</i> and fe	<i>in</i> the method	nanufacturing process of cement, ceramics, glass	Cogr	nitive		Underst	and	
CO3	Recog indust	g nize th ries.	e technologies used in small scale chemical	Cogr	nitive		Underst	and	
CO4	Interp and sy	oret the orthesis	various toxic chemicals used in agro industries of sugar	Cogr Affe	nitive ctive		Remem Receive	ber	
CO5	<i>Exam</i> indust	<i>ine</i> the trial pol	various pollutants and gain awareness about lution.	Cognitive Affective			Analyze Respon	e d	
UNIT I RAW MATERIALS AND ENERGY FOR CHEMICAL INDUSTRY							9+3		
concer classif cetane	ntration fication numbe	s - int s - int of fuels	tegral utilization of raw materials.Energy for ch s – coal – fuel gases and liquid fuels – petroleum – position and uses of coal gas, water gas, producer g	emica cracki as, oil	l indung $-$ (ustry Octar od go	– Fue ne numb bar gas	ls – ber –	
UNI	1 11	CEME	ENT, CERAMICS, GLASS AND FERTILIZERS					9+3	
Cemer of cen glazin lead g ammo UNIT Electro and w manuf metal	Cement: Manufacture – Wet Process and Dry process. Types, Analysis of major constituents, setting of cement, reinforced concrete. Cement industries in India. Ceramics: Important clays and feldspar, glazing and verification.Glass: Types, Composition, manufacture of Optical glass, colored glasses, lead glass and neutron absorbing glass. Fertilizers: Fertilizer industries in India, Manufacture of ammonia, ammonium salts, urea, superphosphate, triple superphosphate and nitrate salts.UNIT IIISMALL SCALE CHEMICAL INDUSTRIES9+3Electrothermal and electrochemical industries: electroplating – surface coating industries – oils, fats and waxes – Textiles industry-soaps and detergents – cosmetics. Match industries and fire works: manufacture of some industrially important chemicals like potassium chlorate, and red phosphorus – metal powders								
Sugar	: Cane s	ugar m	anufacture, recovery of sugar from molasses, sugar	estimat	tion, s	ugar	industr	ies	
in Ind of acti Baygo	ia. Agro ion and on, DDV	ochemic synthes /P, War	cal industries: Important categories of insecticides, sis of common pesticides like Gammexane, DDT, al rfarin.	fungici athrin,	des, h Parat	hion,	cides. N Malath	Iode tion,	
UNI	ΤV	INDUS	TRIAL POLLUTION & CHEMICAL TOXICOLOG	ĞΥ				9+3	
Introduction Chemics the environment	uction – cal indus vironmer	causes o try – pu nt – bioc	of industrial pollution – thermal power plants – nuclear polp and paper industries – agro based industries – cement chemical effects of arsenic, cadmium, lead, mercury and	ower re industr yanide.	actors y.Toxi	– fert ic Ch	ilizers an emicals i	nd in	

LECTURE	TUTORIAL	SELF STUDY	PRACTICAL	TOTAL					
45	15	0	0	60					
TEXT BOOKS									
1. B.K Sharma – Inc	lustrial chemistry – C	Goel publishinghous	e.						
2. B.N.Chakrabarty,	Industrial Chemistry,	,Oxford&IBH Publi	shing Co., New Delhi	i,(1981).					
3. P.P.Singh, T.M.Jo	oseph, R.G.Dhavale,	College Industrial C	Chemistry, Himalaya	PublishingHouse,					
Bombay, 4 th edn.	, (1983).	-		-					
REFERENCES									
1. I.Mukhlyonov(ed	.),Chemical Technolo	ogy,Vol.1,Mir publi	cation, Moscow, III	edn., (1979).					
2. A.K.De., Environ	mental Chemistry, W	Viley Eastern Ltd.,11	l edn., Meerut(1989)						
3. R.Norris Shreve a	nd J.A.Brink, Jr. Che	emical Process Indu	stries. IV edn., McGi	aw Hill,Tokyo,					
(1977).									
4. B.K.Sharma and H.	Kaur, Environmental C	hemistry, Krishna Pra	akashan,Meerut,1997.						
5. A.K. De, Envionme	ent Chemistry, Wiley E	astern Ltd., Meerut19	994,						
6. A.K. Mukherjee, Er	6. A.K. Mukherjee, Environmental Pollution and Health Hazards – Causes and Control Galgotia								
Press, New Delhi19	986.								
·									

COURSE CODE	XCY602B			Т	Ρ	SS	С
COURSE NAME	URSE NAME MATERIAL CHEMISTRY				0	0	4
PREREQUISITES	Nil		L	Т	Ρ	SS	Н
C:P:A	3.4:0:0.6	:0:0.6			0	0	4
COURSE OUTCOMES: : On the successful DOMA				L	EVE	Ľ	
completion of the cours	se, students will be able to						
CO1 <i>Explain</i> the ba	asic concept of Structure of	Cognitive		ι	Jnde	rstand	d
matter and the	eir various properties.						
CO2	Cognitive		F	Reme	mber		
phase behavio			A	Apply	/		
phase benavio	phase behavior of materials.						
CO3 Recognize the	significance of mechanical and	Cognitive Rem			Reme	embe	
electrical prop	perties of materials.			r			
					Jnde	rstan	
CO4 Describe the i	mortance of magnetic optical	Cognitive		I	Inde	retand	1
and thermal n	roperties of materials	Affective		L	Pecei	ve	1
CO5	toperties of materials.	Cognitive		I	2eme	mber	
Interpret the v	various techniques used in the	Affective			Annly		
characterizatio	on of materials.	1 moonve		F	-PP13 Resno	, and	
UNIT I STRUCTI	IRF OF MATTER				cospe	0_13	
Atomio atmustures Warra	machanical models electronic and	figurations	onic		1004		11:0
and secondary hand St	a mechanical model; electronic col	ingurations; 1	unic,	cova	alent	, meta	

Atomic structure: Wave mechanical model; electronic configurations; ionic, covalent, metallic and secondary bond. Space lattices and crystal ographic systems; influence of radius ratio on coronation, structure of common metallic, semi conducting, ionic, polymeric and ceramic materials.

Use of X-ray diffraction for determination of simple structures, point, line and surface defects; geometry of edge and screw dislocations. Burger's vector; grain and twin boundaries.

UNIT II	MECHNICAL BEHAVIOUR OF MATERIALS	9+3
Mechanic	al properties	

Elastic, anelastic and viscoelastic behaviours of materials, atomic model of elastic behaviours, rubber – like elasticity, relaxation processes, displacement model for viscoelasticity, plastic deformation, slip systems in crystals, critical resolved shear stress, work hardening, strengthening mechamism, ductile and brittle fracture, Griffith's criterion; failure of materials due to creep and fatigues, deformation behaviours of polymers and ceramics.

UNIT III ELECTRICAL PROPERTIES OF MATERIALS

9+3

Electrical Properties

Electrical / Electronic behaviours of materials, electronic and ionic conductivity; free electron and band theory of solids; intrinsic and extrinsic semiconductors, conduction mechanisms, junctions and devices, viz-diodes, rectifiers, transistors and solar cells; super conductivity.

Dielectric behaviours of materials

Polarization phenomena, polarizability, frequency and temperature dependence of dielectric constant.

UNIT IV MAGNETIC, OPTICAL AND THERMAL PROPE	RTIES 9+3
OF MATERIALS	

Magnetic properties

Magnetic behaviours of materials: JMR materials- dia, para, ferro and ferri magnetisms, soft and hard magnetic materials including ceramic magnets,

Optical Propertie	S						
Optical properties of materials, elementary ideas about absorption, transmissions and							
reflection refractive index, lasers and their application, optoelectronic devices.							
Thermal properti	es						
Thermal propertie	s of materials, sp	becific heat, thermal con	ductivity and ther	mal expansions			
UNIT V TEC	CHNIQUES		•	9+3			
Thin film deposit	tion techniques						
Introduction – C	VD, PVD, Spra	y pyrolysis, Sputtering,	, Molecular bean	n epitaxy Electro-			
plating and Electr	oless platingmet	hods.					
Materials charac	terizationtechni	iques					
Materials charact	erization technic	jues such as XRD, ES	C A, XPS, AES	, FTIR and Laser			
Raman spectrosco	opy. Microscopi	ctechniques - SEM, A	FM and TEM. T	'hermal analysis –			
TG/DTA and DSC	2.						
LECTURE TUTORIAL SELF STUDY PRACTICAL TOTAL							
LECTURE	TUTORIAL	SELF STUDY	PRACTICAL	TOTAL			
LECTURE 45	TUTORIAL 15	SELF STUDY 0	PRACTICAL -	TOTAL 60			
LECTURE 45 TEXT BOOKS	TUTORIAL 15	SELF STUDY 0	PRACTICAL -	TOTAL 60			
LECTURE 45 TEXT BOOKS 1. Kandasamy	TUTORIAL 15 . P, Thilagavathi	SELF STUDY 0 . K, Allied Mathematics	PRACTICAL -	TOTAL 60 , S.Chand and			
LECTURE 45 TEXT BOOKS 1. Kandasamy Company	TUTORIAL 15 7. P, Thilagavathi Ltd, New Delhi,	SELF STUDY 0 . K, Allied Mathematics 2004.	PRACTICAL -	TOTAL 60 , S.Chand and			
LECTURE 45 TEXT BOOKS 1. Kandasamy Company REFERENCES	TUTORIAL 15 7. P, Thilagavathi Ltd, New Delhi,	SELF STUDY 0 . K, Allied Mathematics 2004.	PRACTICAL -	TOTAL 60 , S.Chand and			
LECTURE 45 TEXT BOOKS 1. Kandasamy Company REFERENCES 1. T.K.Manic	TUTORIAL 15 7. P, Thilagavathi Ltd, New Delhi, havasagamPillaia	SELF STUDY 0 . K, Allied Mathematics 2004. andS.Narayanan,Trigono	PRACTICAL - s, Volume I and II	TOTAL 60 , S.Chand and anPublishers			
LECTURE 45 TEXT BOOKS 1. Kandasamy Company REFERENCES 1. T.K.Manicl and Printer	TUTORIAL 15 7. P, Thilagavathi Ltd, New Delhi, havasagamPillaia s Pvt. Ltd.	SELF STUDY 0 . K, Allied Mathematics 2004. andS.Narayanan,Trigono	PRACTICAL - s, Volume I and II ometry,Viswanath	TOTAL 60 , S.Chand and anPublishers			
LECTURE 45 TEXT BOOKS 1. Kandasamy Company REFERENCES 1. T.K.Manici and Printer 2. S. Narayan	TUTORIAL 15 7. P, Thilagavathi Ltd, New Delhi, havasagamPillaia s Pvt. Ltd. 1 and T.K. Manic	SELF STUDY 0 . K, Allied Mathematics 2004. andS.Narayanan,Trigono cavachagam Pillay, Anci	PRACTICAL - - - - - - - - - - - - - - - - - - -	TOTAL 60 , S.Chand and anPublishers s, Viswanathan			
LECTURE 45 TEXT BOOKS 1. Kandasamy Company REFERENCES 1. T.K.Manicl and Printer 2. S. Narayan Publishers	TUTORIAL 15 7. P, Thilagavathi Ltd, New Delhi, havasagamPillaia s Pvt. Ltd. n and T.K. Manic and Printers Pvt	SELF STUDY 0 . K, Allied Mathematics 2004. andS.Narayanan,Trigono cavachagam Pillay, Anci Ltd.	PRACTICAL - s, Volume I and II ometry,Viswanath illary Mathematic	TOTAL 60 , S.Chand and anPublishers s, Viswanathan			
LECTURE 45 TEXT BOOKS 1. Kandasamy Company REFERENCES 1. T.K.Manicl and Printer 2. S. Narayan Publishers E REFERENCE	TUTORIAL 15 7. P, Thilagavathi Ltd, New Delhi, havasagamPillaia s Pvt. Ltd. n and T.K. Manic and Printers Pvt S	SELF STUDY 0 . K, Allied Mathematics 2004. andS.Narayanan,Trigono cavachagam Pillay, Anci Ltd.	PRACTICAL - s, Volume I and II ometry,Viswanath illary Mathematic	TOTAL 60 , S.Chand and anPublishers s, Viswanathan			

COU	COURSE CODE XCY603A				L	Т	Р	SS	С
COU	COURSE NAME FOOD CHEMISTRY			3	1	0	0	4	
PREF	REQUISITES	NIL			L	Т	Р	SS	Н
C:P:A	λ	3.7:0:0.3 3 1 0						0	4
COURSE OUTCOMES : On the successful completion of the course, students will be able toDOMAINLE						ΈL		1	
CO1	Describe the ba	asics of food.		Cognitive	nitive Remember Understand				
CO2	<i>Interpret</i> the co	olloidal types, prop	perties of food.	Cognitive	Und App	erstan ly	d		
CO3	<i>Explain</i> the for	rmation of emulsio	n of food.	Cognitive Affective	Ana Rece	lyze eive			
CO4	<i>Identify</i> the rol	e of water in food.		Cognitive	Und	erstan	d		
CO5	<i>Recognize</i> the	chemical reaction of	of food.	Cognitive Affective	e Remember e Receive				
UNIT	I INTROD	UCTION TO FO	OD					7 +	3
Defini foods,	itions – Food, nu , properties of foo	trients, principle co ods, physical, chen	omponents of foo nical, functional	ods, functions o and kinetic prop	f food perties	s, clas	sificat	ion of	
UNIT		DAL PROPERTI	ES OF FOOD	- · ·				9+3	3
Collo1 meani	idal system in foo ng, type, propert	ods – meaning, typ ies, theory of gel fo	es, properties. So formation, factors	ols – meaning, t s influencing ge	ypes, j l form	propea ation.	rties: g	gels –	
UNIT	III FOOD E	MULSION						9+3	3
Emuls of emu of foat foamin	sion – meaning, t ulsifying agent, o m formation, pro ng agents – natur	ypes, properties, en common food emu operties – factors in ral and symthetic.	mulsifying agent lsions: foams – ifluencing foam	s, natural and symmetry meaning, methor formation, factor	ynthet ods of ors affe	ic emu foam ecting	ılsifier forma stabili	, funct tion, th ity of f	ions leory oam,
UNIT	IV ROLE O	F WATER IN FOC	D					9+3	3
Water water water	- forms and typ in food, intermed activity, estimati	es of water, hydrog diate moisture food on of moisture in f	gen bonding in w ls, water activity coods.	vater, water and – definition, m	ice pro easure	opertion ment	es, fun and co	ontrol o	of f
UNIT	V CHEMIC	AL REACTION IN	FOOD					11-	- 3
Heat t dextrin	ransfer operatior nisation of starch revention	n in foods – conduction conduction in foods – conduction in foods	tion, convection non enzymatic b	, radiation, gela prowning reaction	tinizat on in f	ion, ro oods,	etro gr rancid	adatior ity – ty	n, vpes
L	ECTURE	TUTORIAL	SELF STUDY	Z PRA	CTIC	AL		тот	AL
4	45	15	0		0			60	
TEXT	BOOKS								
1. Foo 2. Foo 3. Exp	od science, Chem od Science byNor perimental study	istry and Experime rman.N.Potter of Foods by Grisw	ental foods by M oldR.M.	.Swaminathan.					

REFERENCES

- 1. Food Science by HelenCharley.
- 2. Foundation of Food Preparation by A.G.Peckam.
- 3. Modern Cookery for teaching and trade, volume I&II, Thangam Philip. OrientLongmansLtd.
- 4. Food Fundamentals by MacWiliams, John Willy and son"s, NewYork.
- 5. Food Facts & Principles by Shakunthala manay & Shadakhraswamy.
- 6. Food Science by Srilakshmi, second edition,(2002).

COURSE C	ODE	XCY603B	L	Т	Р	SS	С
COURSE N	IAME	POLYMER CHEMISTRY	3	1	0	0	4
PREREQU	ISITES	NIL	L	L T P			Н
C:P:A		3.4:0:0.6	3	1	0	0	4
COURSE (COURSE OUTCOMES: On the successful completion of the DOMAIN				LI	EVEL	
course, stud	lents will	be able to					
CO1	Explain	the chemistry of polymerization.	Cogr	nitive		Und	erstand
CO2	Describe	e the preparation of individual polymers	Cogr	nitive		Und	erstand
			Affeo	tive		Res	pond
CO3	Interpre	t their physical properties of polymers and	Cogr	nitive		Und	erstan
	explain the	ne molecular weight and size of polymers.				d Ap	ply
			Affec	tive		Res	pond
CO4	Recogni	ze the polymerization techniques and	Cogr	nitive		Ana	lyze
	Classify						
CO5	the uses	or polymers.	Cog	, itiyo		Dom	ambar
005	Summar	ize the processing of polymers	Cogi	nuve			
UNIT I	CLASSI	FICATION OF POLVMERS AND CHEN	/ ISTR	V OF			
	POLYM	ERISATION		IUI			1015
Classificatio	on of Poly	mers, linear polymers, non-linear or branche	d polyr	ners. c	ross –	linke	d
polymers,	homo cha	in hetero chain, homopolymers co-polym	ners bl	ock p	olyme	rs an	d graft
polymers.				1	5		U
Chemistry	of polym	erization: Types of polymerization – me	chanisi	n – c	chain,	grow	rth, co-
ordination,	ring ope	ening, metathetical, group transfer, polya	addition	n and	poly	conde	nsation
polymerizat	ions.						
UNIT II	INDIVI	DUAL POLYMERS					10+3
Individual F	Polymers:	Monomers required general methods of prep	aration	, repea	t units	and u	uses of
the followi	ng polyn	ers and resins, polystyrene, polyacrylonit	rile, p	olymet	thyl, 1	metha	crylate,
Polytetra –	fluoroet	hylene, polybutadienes and polychloropre	ne, po	lyester	s, po	lycart	onates,
polyimides,	polyamic	les (Kevlar), polyurethanes, polyethylene, g	glycols,	pheno	ol – fo	ormale	dehyde,
urea – form	aldehyde,	melamine – formaldehyde and epoxy resins.					
UNIT III	PROPER	TIES OF POLYMERS					10+3
Intrinsic pro	poperties –	processing properties – basic idea of isomeri	sm of p	olvme	rs - co	onfigu	ration
of polymer	chain – ge	cometrical structure – syndiotatic, isotatic and	atatic	polym	ers.	0	
Glass transi	tion temp	erature: Definition – factors affecting glass tr	ansitio	n temp	eratur	e –	
relationship	s between	glass transition temperature and (a) molecul	ar weig	, (b)	melti	ng poi	intand
(c) plasticiz	er – impor	rtance of glass transition temperature – heat of	distortio	on tem	peratu	re.	
Molecular v	veight and	size of polymers: Number average, weight a	verage	, sedin	nentat	ion an	d
viscosity av	erage mol	ecular weights - molecular weights and degr	ree of p	olyme	rizatio	n – po	oly
dispersity –	molecula	r weight distribution in polymers – size of po	lymer	molecu	ıles –	kineti	cs of
polymerizat	ion.						
UNIT IV	POLYM	ERISATION TECHNIQUES DEGRADA	TION	AND	USES	OF	8+3
			1.	1		1	
Polymerisa	tion Tech	niques: Bulk, solution, suspension, emulsion,	, melt c	onden	sation	and	h
meriacial	polyconde	ensation polymerizations, Degradation: Ly	pes of	uegra		1 - t	nermal,
inechanical,	hydrol	utic and photodegradation – photo stabiliz	ers –	oxidat	ive d	egrada	auon –
antioxidants	s – nyarol	yne degradadon. Uses of polymers in electro	mes an	u vion	ieuicif	ie.	
		00					

UNIT V F	POLYMER PROC	CESSING		7+3					
Polymer proce	essing: Plastics (the	ermo and thermosetting), ela	stomers, fibres,compo	ounding,					
plasticizers, colorants, flame retardants. Compression and injection moudlings – film extrusion									
and calendaring – die casting and rotational casting – thermofoaming –reinforcing.									
LECTURE	LECTURE TUTORIAL SELF STUDY PRACTICAL TOTAL								
45	45 15 0 0 60								
TEXT BOOK	KS	·							
1. Seymou	ır, R.B. & Carraher,	C.E. Polymer Chemistry: An	n Introduction, Inc. New	w York,(1981).					
2. Odian, 0	G. Principles of Pol	ymerization, 4th Ed. Wiley,(2	004).						
3. Billmey	yer, F.W. Textbook	of Polymer Science, 2nd Ed.	Wiley Interscience,(197	71)					
4. Ghosh,	P. Polymer Science	& Technology, Tata McGrav	w-Hill Education,(1991	l).					
5. Lenz, I	R.W. Organic Chem	istry of Synthetic High Poly	mers, Interscience Publ	lishers, New					
York,									
(1967).	80								
REFERENCI	ES								
1. M.P.St	tevens,PolymerChe	emistry:AnIntroduction,3rdE	Edition,OxfordUnivers	sityPress,					
(1991)									
2. H.R. A	Allcock, F.W. Lamp	be & J.E. Mark, Contempore	ary Polymer Chemistr	y, 3rd edition,					
(2003)	·		1 1 1 7 7 1 1 7 7 1 7 7 7 1	(1004)					
5. F.W.E	Sillmeyer, <i>Textbool</i>	<i>x of Polymer Science</i> , 3rd ed	1. Wiley-Interscience,	(1984).					
4. J.K. Fr	led, Polymer Scien	ce ana Technology, 2nd ed.	Prentice-Hall(2003)	d ad Taha					
5. P. Mun Wiley	& Sons(2002).	navi, Introduction to Macroi	<i>molecular Science</i> , 2n	a ea. Jonn					
6. L. H. S	perling, Introduction	on to Physical Polymer Scie	nce, 4th ed. John Wile	ey & Sons					
(2005).	harrana Dalaman Cl	· ····································	ad ad Orford University	:4					
Press,(2	2005).	iemisiry: An Introduction 31	iu eu. Oxioru Universi	цу					
8. Seymou	r/ Carraher's Poly	mer Chemistry, 9th ed. by C	harles E. Carraher, Jr.	(2013).					

CO	URSE CODE	XCY604			L	Т	Ρ	S S	С		
CO	URSE NAME	ORGANIC PRACTICA	QUALITATIVE L VI	ANALYSIS	0	0	4	0	2		
PREF	REQUISITE	Nil			L	T	Ρ	S S	H		
	C:P:A	1: 0.8:0.2			0	0	4	0	4		
COURSE OUTCOMES				E	OMAIN	1	LEV				
CO1	<i>Identify</i> the v	arious Metals	in the present	in the given	Cognit	ive		Reme	Remember Rereantion		
CO2	Estimate the	amount of ac	ids using volum	netric	Cognit	ive		Under	stand Set		
	method the fundamen	tals of group	separation and	chemical	Psycho	omotor					
CO3	Feaction takes place in the confirmation test.CognitiveApplEstimatethe amount of bases using volumetric method and InterpretCognitiveApply SetPsychomotor Affectivey SetmixturemixtureAffective			ving							
•	L								3 hours each exp		
I. Orga	nic Estimation	1						L	-		
1. Esti	mation ofpheno	1									
2. Esti	mation ofanilin	e									
3. Esti	mation ofglucos	se									
II. Org	anicAnalysis										
Substar	nces to be analy	sed:									
1. Aron	natic acid (mon	o carboxylic	acid)								
2. Aron	natic ester (mor	no functionalg	group)								
3. Aron	naticaldehyde										
4. Aron	naticketone										
5. Phen	ol										
6. Carb	ohydrate (Gluc	oseonly)									
7. Alipl 8. Aron	hatic amide(ure naticamide	a)									
9. Aron	natic amine(An	iline)									
10. Aro	matic nitrocom	pound									
	TT	OUDS	LECTURE	TUTORIA	LPR	ACTIO	CAL	TOTA	AL		
	п	UUNS	U	U	1	OU			UU		

TEXT BOOKS

- 3 B.S.Furniss, A.J.Hannaford, V.Rogers P.W.GSmithand A.R.Tatchell., "Vogel's Textbook of practical Organic Chemistry", (ELBS), 5th edn., 2009.
- 4 J.Bassett, R.C.Denney, G.HJefferyand J.Mendham, "Vogel'stextbook of Quantitative Inorganic Analysis (revised)", (ELBS), 6th edn., 2007.

E Resources - MOOCs:

http://freevideolectures.com/Course/2380/Chemistry-Laboratory-Techniques
 http://freevideolectures.com/Course/2941/Chemistry-1A-General-Chemistry-Fall-

20113.http://ocw.mit.edu/courses/chemistry/5-301-chemistry-laboratory-techniques
COURSE CODE		XCY605	L	Т	Р	S S	С	
COURSE NAME PREREQUISITE		PHYSICAL CHEMISTRY PRACTICAL VIA	0 L	0 T	4 P	0 S S	2 H	
		Nil						
C:P:A		1: 0.8:0.2	0	0	4	0	4	
COURSE OUTCOMES			DOMAIN			LEV EL		
CO1	Determine ti temperature.	ne molecular weight and critical solution	Cognitive Psychomotor			Remember Perception		
CO2	<i>Estimate</i> relative strength of acids and partial coefficient.			Cognitive Psychomotor			Understand Set	
CO3	<i>Interpret</i> the electrochemistry and thermochemistry titrations and <i>examine</i> the complexometric titration.			Cognitive Psychomotor Affective			Appl y Set Receiving	
PHYSICAL CHEMISTRY PRACTICAL VIA							3 hours each exp	

→

1. Phasediagram:

- a. Simpleeutectic
- b. Compoundformation

2. Determination of molecular weight:

- a. Rast-macro method (using naphthalene assolvent)
- b. Transition temperature (using sodium thio sulphate penta hydrate as salthydrate)

3. Critical solutiontemperature

- a. CST of phenol watersystem
- b. Estimation of sodium chloride by studying the CST of phenol-watersystem

4. Kinetics

Determination of relative strength of acids by acid catalysed hydrolysis of ester

5. Partition co-efficient

- a. Study of equilibrium $KI+I_2$ KI_3 by studying the partition co-efficient of iodine between water and carbon tetrachloride.
- b. Determination of association factor of benzoic acid inbenzene

6. Electrochemistry

Conductometric titration between an acid and a base (HCl Vs NaOH)

Potentiometric method – Potentiometric titration between 1. an acid and a base (HCl Vs NaOH) and 2. KMnO₄Vs FAS 69

VI. Complexometric Titrations

Estimation of Zn, Mg and Ca ions using EDTA and estimation of silver by argentometry.

LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL						
0	0	60	0	60						
 TEXT BOOKS 1. Venkateswaran V, Veeraswamy R., Kulandaively A.R., Basic principles of practical chemistry, 2nd edition, New Delhi, sultan chand & sons, (1997). 										
REFERENCE 1. J.B.Yadav;"Advanced Practical Physical Chemistry"6 th Edn.,Goel Publications,Meerut, 1986.										